
Biochemical Pharmacology 225 (2024) 116299

Available online 18 May 2024
0006-2952/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Time-dependent ligand-receptor binding kinetics and functionality in a 
heterodimeric receptor model 

Antonio J. Ortiz a,b,c, Víctor Martín a,d, David Romero f, Antoni Guillamon d,e,f,*, 
Jesús Giraldo a,b,c,** 

a Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 
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A B S T R A C T   

GPCRs heteromerize both in CNS and non-CNS regions. The cell uses receptor heteromerization to modulate 
receptor functionality and to provide fine tuning of receptor signaling. In order for pharmacologists to explore 
these mechanisms for therapeutic purposes, quantitative receptor models are needed. We have developed a time- 
dependent model of the binding kinetics and functionality of a preformed heterodimeric receptor involving two 
drugs. Two cases were considered: both or only one of the drugs are in excess with respect to the total con-
centration of the receptor. The latter case can be applied to those situations in which a drug causes unwanted side 
effects that need to be reduced by decreasing its concentration. The required efficacy can be maintained by the 
allosteric effects mutually exerted by the two drugs in the two-drug combination system. We discuss this concept 
assuming that the drug causing unwanted side effects is an opioid and that analgesia is the therapeutic effect. As 
additional points, allosteric modulation by endogenous compounds and synthetic bivalent ligands was included 
in the study. Receptor heteromerization offers a mechanistic understanding and quantification of the pharma-
cological effects elicited by combinations of two drugs at different doses and with different efficacies and 
cooperativity effects, thus providing a conceptual framework for drug combination therapy.   

1. Introduction 

There is experimental evidence showing the existence of hetero-
dimeric Class A GPCRs both in CNS and non-CNS regions [15]. Yet, 
because of the weak protein–protein interactions present in Class A 
heteromers, the existence of these oligomeric complexes is not an un-
questionable event and needs experimental verification. In this regard, 
three criteria have been proposed to assess the existence of these 

complexes: 1. Heteromers should exhibit appropriate colocalization and 
interaction to enable allosterism. 2. Heteromers should exhibit distinct 
properties. 3. Heteromer-selective reagents should alter heteromer 
properties [15]. 

In contrast to Class A, the existence of heterodimeric Class C GPCRs 
offers no doubt because the union between the two subunits is made by 
means of a covalent bond. Importantly, the existence of metabotropic 
glutamate mGlu2–mGlu4 heterodimers in different brain regions has 
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been proved and quantified by using nanobody-based optical sensors 
[28]. Interestingly, data indicated that there are more mGlu2–mGlu4 
heterodimers than mGlu4 homodimers in most regions outside the cer-
ebellum [28]. This suggests that mGlu2-mGlu4 heteromerization is not a 
chance event but a consequence of biological conditions that may be a 
general property of mGlu heteromerization [25,29] and other Class C 
GPCRs, say GABAB receptors [12] and sweet and umami taste receptors 
[39]. 

It can be speculated that if there is a biological role for hetero-
merization of Class C GPCRs, the same must be true for heteromerization 
of Class A GPCRs and for heteromerization between Class C and Class A 
GPCRs. This leads to the conclusion that GPCR heteromerization is key 
in GPCR signaling (see [3,5,17,34] for more information). 

GPCR heteromerization provides fine-tuning of receptor signaling. 
This is done by (i) activating a novel pathway different from each pro-
tomer’s signaling cascade; (ii) trans-antagonism: activation of one re-
ceptor inhibits the signaling activity of the other; and (iii) trans- 
activation: the ability to initiate the signaling cascade of one receptor 
upon agonist binding to the other protomer. Heteromerization generates 
a paradigm shift in signal transduction by GPCRs: from vertical (one 
ligand, one receptor, one effector) to horizontal (two interacting re-
ceptors)[9]. It can be suggested that receptor heteromerization is a 
singular way in which the cell modulates signaling and physiological 
responses through allosteric interactions between receptors. These in-
teractions may depend on the receptor environment and, therefore, 
different distributions of receptor heterodimers can be obtained 
depending on the brain region considered, as observed for mGlu2- 
mGlu4 heterodimers [28]. 

Receptor heterodimerization may open new opportunities in drug 
therapy, particularly in drug combination therapy, by taking advantage 
of the synergistic effects between drugs that appear through allosteric 
interactions between the two protomers in the receptor heterodimer. 
Drug combination therapy is widely used for different diseases being 
chronic pain a typical example [13]. Drug combination therapy includes 
the administration of two or more drugs, say two for simplicity, A and B, 

in which [A] + [B] added concentrations are more beneficial than either 
2[A] or 2[B]. This may be of particular relevance in the case of chronic 
pain and the use of opioids as analgesics [11]. Due to the severe side 
effects of opioids, it may be advisable to use a two-drug combination (A, 
B) in which the opioid, say A, is added at a low concentration. The non- 
opioid drug, say B, which is assumed to produce less severe effects, 
would ideally interact cooperatively with A, thus facilitating that the 
decrease in the concentration of A does not reduce the desired thera-
peutic effect. 

The concept of receptor heterodimerization provides a mechanistic 
framework for quantifying the biological response of two simulta-
neously acting drugs. In a previous publication, a mathematical model 
for heterodimeric receptors at equilibrium was proposed and the func-
tional and binding response quantified [40]. In a subsequent study, 
binding kinetics was considered in the context of receptor hetero-
merization and under equilibrium conditions by converting dissociation 
equilibrium constants (Kn) into association (kn) and dissociation (k-n) 
rate constants, where Kn = k-n/kn [7]. 

The main objective of the present study is to extend our previous 
studies [40,7] by adding the time variable to the heterodimer receptor 
model to quantitatively analyze the dynamic behavior of the different 
receptor species under non-equilibrium conditions. Our study also 
complements previous work modeling the binding of two ligands to a 
homodimeric receptor [37]. It is worth noting that since the chosen 
biological system is a heterodimeric receptor, the present study is 
appropriate for the quantification of the binding and functionality of 
two different drugs targeting two different receptors and then fits the 
purpose of drug combination therapy. This therapeutic approach re-
quires the establishment of a solid conceptual framework so that pro-
posed drug combinations are supported by rigorous mechanistic models 
and are not based solely on empirical data. In this sense, the formalism 
developed here could be of interest for experimenters to test hypotheses 
involving receptor-receptor interactions and also in pharmacokinetic/ 
pharmacodynamic (PK/PD) studies to incorporate the increasing 
complexity currently appearing in molecular pharmacology. 

Fig. 1. Binding kinetics model of a heterodimeric receptor. Ligands A and B bind specifically to their receptor protomers, R1 and R2, respectively. There are four 
receptor species: the unbound heterodimer, R1R2; the singly-bound heterodimers, AR1R2 and R1R2B; and the doubly-bound heterodimer, AR1R2B [40]. a) Association 
(k1 to k4) and dissociation (k-1 to k-4) rate constants are used. b) Cooperativity rate constant parameters α+, α-, β+ and β-, where α+ = k4/k1, α- = k-4/k-1, β+ = k3/k2, 
and β- = k-3/k-2, are included. It can be shown that, at equilibrium, 7 out of the 8 parameters are independent since the condition (k-1 k4)/(k1 k-4) = (k-2 k3)/(k2 k-3) 
or, equivalently, α+/α- = β+/β-, is satisfied [7]. c) Equilibrium dissociation constants (K1 to K4, where K1 = k-1/k1 = [A]eq[R1R2]eq/[AR1R2]eq, K2 = k-2/k2 =

[B]eq[R1R2]eq/[R1R2B]eq, K3 = k-3/k3 = [B]eq[AR1R2]eq/[AR1R2B]eq, and K4 = k-4/k4 = [A]eq[R1R2B]eq/[AR1R2B]eq, are used. d) Binding cooperativity parameters α 
and β, where α = K1/K4 = α+/α- = β = K2/K3 = β+/β-, are used. 
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2. Methods 

The goal of this section is to present a dynamical system formed by 
ordinary differential equations (ODEs) that describes the behavior of 
binding kinetics of a heterodimeric receptor over time, and to explain 
how we deal with the solutions in two paradigmatic cases. 

The rates of the forward and backward processes of each of the 
reversible ligand-receptor association/dissociation reactions included in 
Fig. 1 are obtained according to the Law of Mass Action. This law states 
that the rate vn of any chemical reaction is equal to the product of the 
concentrations of the reactants times the corresponding microscopic rate 
constants kn: 

v1 = k1[A]x, v− 1 = k− 1y,
v2 = k2[B]x, v− 2 = k− 2z,
v3 = k3[B]y, v− 3 = k− 3w,

v4 = k4[A]z, v− 4 = k− 4w,

(1)  

where x  = [R1R2], y = [AR1R2], z = [R1R2B], w = [AR1R2B], and [A] 
and [B] are the concentrations of the free ligands, respectively. The 
concentrations of the chemical species are expressed in molarity (M) and 
the forward and reverse rate constants in M− 1 s− 1 and s− 1, respectively. 

Then, according to Fig. 1, the global dynamics of the heterodimer 
model is represented by the following system of ODEs: 
⎧
⎪⎨

⎪⎩

xʹ = v− 1 + v− 2 − v1 − v2 = k− 1y + k− 2z − k1[A]x − k2[B]x,

yʹ = v− 3 + v1 − v3 − v− 1 = k− 3w + k1[A]x − k3[B]y − k− 1y,

ź = v− 4 + v2 − v4 − v− 2 = k2[B]x + k− 4w − k− 2z − k4[A]z,

wʹ = v4 + v3 − v− 4 − v− 3 = k4[A]z + k3[B]y − k− 4w − k− 3w,

(2)  

where xʹ = dx
dt =

d[R1R2 ]
dt , ý =

dy
dt =

d[AR1R2 ]
dt , ź = dz

dt =
d[R1R2B]

dt and wʹ = dw
dt =

d[AR1R2B]
dt . 
There are three constraints on this system. The first one is the con-

servation of the total receptor concentration, [Rtot] = x + y + z + w, 
which provides the dependence of any of the four variables on the other 
three. Without loss of generality, we choose to eliminate the variable w 
by substituting 

w = [Rtot ] − x − y − z. (3)  

Therefore, the four-dimensional ODE system (2) is reduced to the 
tridimensional ODE system 
⎧
⎨

⎩

xʹ = k− 1y + k− 2z − k1[A]x − k2[B]x,
yʹ = k− 3([Rtot] − x − y − z ) + k1[A]x − k3[B]y − k− 1y,
ź = k2[B]x + k− 4([Rtot ] − x − y − z ) − k− 2z − k4[A]z.

(4)  

The other two constraints are the conservation of the total concentra-
tions of ligands A and B: 

[Atot ] = [A] + [AR1R2] + [AR1R2B] = [A] + y+w,

[Btot] = [B] + [R1R2B] + [AR1R2B] = [B] + z+w,

and so 

[A] = [Atot] − y − w, (5)  

[B] = [Btot ] − z − w. (6)  

By substituting the expression for w from equation (3) into equations (5) 
and (6) we get: 

[A] = [Atot] − [Rtot ] + x+ z, (7)  

[B] = [Btot ] − [Rtot] + x+ y. (8)  

When relationships (7) and (8) are included in system (4), a general 
model for the heterodimer dynamics is obtained, in which the depen-

dence on the total concentrations of both ligands and receptors will 
obviously play an important role. Since we want to explore the com-
bined effect of the two ligands, we focus on specific cases of the general 
model. More precisely, we consider two cases:  

• Case 1: both ligands are in excess with respect to the total receptor 
concentration. This case corresponds to a regular administration of 
drugs.  

• Case 2: only one ligand is in excess with respect to the total receptor 
concentration. In this case, the dose of one of the drugs is reduced 
due to therapeutic reasons. This situation can be the case of an opioid 
drug because of its unwanted side effects such as respiratory 
depression, constipation or addiction. 

For Case 1, the following approximations hold: 

[Atot]≫[Rtot]⇒[A] ≈ [Atot] (9)  

[Btot ]≫[Rtot ]⇒[B] ≈ [Btot] (10)  

Consequently, model (4) becomes 
⎧
⎨

⎩

xʹ = k− 1y + k− 2z − k1[Atot ]x − k2[Btot]x,
yʹ = k− 3([Rtot ] − x − y − z ) + k1[Atot]x − k3[Btot ]y − k− 1y,
ź = k2[Btot ]x + k− 4([Rtot ] − x − y − z ) − k− 2z − k4[Atot]z.

(11)  

Observe that system (11) is a linear system of ODEs. Thus, we can take 
advantage of the extensive knowledge provided by the theory of linear 
ODEs. 

For Case 2, we will assume that ligand B is in excess with respect to 
the total receptor concentration, while concentration of ligand A is 
several orders of magnitude lower. Thus, by substituting equations (7) 
and (10) for the concentrations of ligands A and B, respectively, in (4), 
we obtain the following system: 
⎧
⎨

⎩

xʹ = k− 1y+k− 2z − k1([Atot ] − [Rtot ]+x+z)x − k2[Btot]x,
yʹ = k− 3([Rtot ] − x − y − z)+k1([Atot] − [Rtot ]+x+z)x − k3[Btot ]y − k− 1y,
zʹ = k2[Btot]x+k− 4([Rtot ] − x − y − z) − (k− 2 +k4([Atot ] − [Rtot]+x+z))z.

(12)  

In this case, the system is non-linear (in fact, quadratic) and we will have 
to resort to qualitative and numerical methods. 

3. Results 

As stated in Methods, two conditions were considered, namely, both 
ligands are in excess (Case 1) and only one is in excess (Case 2) with 
respect to the total receptor concentration. 

3.1. Case 1: Both ligands are in excess with respect to the total receptor 
concentration 

As mentioned above, the model for this case, system (11), is linear: it 
can be expressed as X’ = MX + b, where X = (x,y,z)T, M is a 3x3 matrix 
and b a 3x1 vector. The theory of linear systems of differential equations 
is well-established (see, for instance, [35]) and it is possible to obtain 
explicit expressions of the solutions of the system, that is, exact algebraic 
descriptions of the time evolution of the concentrations of all the species 
involved in the model. Anyway, given that the number of parameters 
(eleven) is large enough, the expressions are very long and showing 
them does not provide a better understanding of the results; we refer to 
Section 3.1 of [27] for an explanation of how to obtain these long ex-
pressions. Alternatively, we will focus on providing information on 
relevant qualitative aspects and numerical simulations. 

System (11) has a unique equilibrium point (since the determinant of 
M is not null; see Appendix A), which has all coordinates positive and is 
stable for any combination of the parameter values (ki), provided that 
they are positive. Proving that all coordinates are positive is immediate 
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once the general expression of the equilibrium point is obtained. Instead, 
ensuring stability for any choice of the parameters is not trivial as it 
requires the application of the Routh-Hurwitz theorem (see Appendix A 
for details). The uniqueness and stability of the equilibrium point gua-
rantees that, upon setting fixed values for the system’s parameters, 
regardless the choice of the initial concentrations, the same equilibrium 
will invariably be attained. 

Fig. 2 depicts the evolution of the concentrations of the four receptor 
species over time for a particular set of parameter values. These values 
have been chosen as a reference example to visualize how the 

pharmacological model responds to particular established conditions. 
Initially, at t = 0, the only receptor species is the free receptor and the 
ligands A and B are both unbound with their concentrations being equal 
to the externally supplied concentrations. As time increases, the con-
centration of the free receptor (blue curve) decreases monotonically 
whereas the singly bound receptor species (red and yellow curves) in-
crease till reaching a maximum and then decrease; the doubly bound 
receptor species (violet curve) increases monotonically. For t→∞ or, in 
practical terms, for sufficiently large times, the four receptor species 
reach the equilibrium values, as expected. These equilibrium values can 
be also obtained by setting all the right-hand side components of system 
(11) equal to zero and solving for x, y and z. Concentrations values at 
equilibrium are xeq = 4.97 ⋅ 10− 14 M, yeq = 4.97 ⋅ 10− 14 M, zeq = 4.97 ⋅ 
10− 13 M and weq = 9.94 ⋅ 10− 11 M for the set of parameter values chosen 
in Fig. 2. By the conservation law (3), the sum of the concentrations of 
the four receptor species equals the initial free receptor concentration. 
Because ligands A and B are in excess with respect to the receptor 
concentration, they are not significantly consumed over time and, at 
equilibrium, their concentrations are practically the same as at time 
zero. 

Analysis of the time-dependent concentration curves in Fig. 2 in terms 
of the values of the chosen parameters allows the binding cooperativity 
between ligands A and B to be examined. Indeed, in the same way as the 
ratio between rate constants produces equilibrium constants, the ratio 
between cooperativity rate constant parameters produces binding coop-
erativity parameters. In the present case, notice that α+=2, α-=10− 2, 
β+=4, β-=2 ⋅ 10− 2 and, then, α+/α- = α = β+/β- = β = 200, which implies a 
positive binding cooperativity between A and B across the heterodimer 
interface. Now, considering that the equilibrium dissociation constants 
corresponding to Fig. 2 are K1 = [A]eq[R1R2]eq/[AR1R2]eq = 10− 8 M, 
K2 = [B]eq[R1R2]eq/[R1R2B]eq = 10− 9 M, K3 = K2/β = [B]eq[AR1R2]eq/ 
[AR1R2B]eq = 5 ⋅ 10− 12 M and K4 = K1/α = [A]eq[R1R2B]eq/[AR1R2B]eq =

5 ⋅ 10− 11 M, where the concentrations of the different species are taken at 
equilibrium, the equality α = β = 200 means that the affinity of ligand A or 
B for its respective protomer in the heterodimer is 200 times higher when 
the other protomer is occupied. It is worth mentioning that this result can 
be obtained through an infinite number of combinations of rate constants 
satisfying α+/α- = β+/β- = 200. In the example taken for Fig. 2, what 
differentiates ligands A and B is the dissociation rate constant for their 
respective protomers (k-1 and k-2), which is 10 times lower for ligand B. 
This value allows for differentiation between the time-dependent curves 
for [AR1R2] and [R1R2B]. 

Binding kinetics [16,18,21,36] can be connected to the pharmaco-
logical response, E, through a transduction function depending on the 
generated stimulus, S [40]: 

E
Em

=
S

KE + S
, (13)  

where Em is the maximum possible effect of the system and the ratio E/ 
Em is the fractional response. The parameter KE represents the stimulus 
that produces half Em. The stimulus S is the sum of the stimuli generated 
by all heterodimeric receptor species, which are defined as the product 
of their concentrations times their intrinsic efficacies εi: 

S = ∊[R1R2] + ∊A[AR1R2] +∊B[R1R2B] +∊AB[AR1R2B]. (14)  

These equations allow modeling the time-dependent effect of a hetero-
dimer receptor from the initial time (unbound receptors) until equilib-
rium is reached. Fig. 3 depicts the fractional response of a receptor 
heterodimer by using the binding kinetics parameters included in Fig. 2 
and the functional parameters KE = 10− 10 M, ε = 1, εA = 10 and εB =

10− 1. The functional parameter values have been chosen so that A is an 
agonist (εA > ε), B is an inverse agonist (εB < ε) and there is a positive 
functional cooperativity between the two ligands εAB = δεAεB > εAεB, or 
δ > 1 (in this case, δ = 5). As for the binding kinetics part, these values 
have been chosen as a reference example to visualize how the 

Fig. 2. Evolution of the four heterodimeric receptor species over time when 
both ligands A and B are in excess with respect to the total receptor concen-
tration. Parameter values were taken from [7]: [Rtot] = 10− 10 M, [Atot] = [Btot] 
= 10− 8 M, k1 = k2 = 107 M− 1s− 1, k-1 = 10− 1 s− 1, k-2 = 10− 2 s− 1, k3 = 4 ⋅107 

M− 1s− 1, k-3 = 2 ⋅10− 4 s− 1, k4 = 2 ⋅ 107 M− 1s− 1, k-4 = 10− 3 s− 1. Initial condition: 
all heterodimers are empty, (x0, y0, z0) = ([Rtot], 0, 0). 

Fig. 3. Evolution of the fractional response over time when both ligands A and 
B are in excess with respect to the total receptor concentration. Parameter 
values for binding kinetics are the same as in Fig. 2, and the rest are the 
following, taken from [7]: KE = 10− 10 M, ε = 1, εA = 10, εB = 10− 1, δ = 5 and 
εAB = δεAεB = 5. The effect increases monotonically from basal response (E/Em 
= 0.5) until it reaches equilibrium asymptotically just as the concentrations of 

the different receptor species. Note that the basal response is E
Em

=
ε[Rtot ]

KE
ε[Rtot ]

KE
+ 1

=

1
2 [40]. 
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pharmacological model responds to particular established conditions. 
The values used for the efficacy parameters are compatible with a 
bivalent ligand that included two scaffolds: a MOP agonist (here, ligand 
A) and a CB1 inverse agonist (here, ligand B), which proved to have 
antinociceptive properties when the scaffolds were linked by a spacer of 
a particular length [24]. Selective effects elicited by bivalent ligands are 
indicative of heterodimeric receptors. Thus, the pharmacological pro-
files and parameter values used in the present study seem plausible in 
the context of a heterodimeric receptor with chronic pain as the pro-
posed therapeutic target. 

Note that the fractional effect increases monotonically from basal 
response at time zero and reaches a plateau of 0.83, which means that 
the observed response is equivalent to that of a partial agonist in a 
monomeric receptor. 

3.1.1. Bivalent ligands 
The transient or stable presence of receptor heterodimers in the cell 

membrane immediately suggests the possibility of synthesizing bivalent 
ligands. Ideally, these molecules would include two pharmacophores 
specially designed for the corresponding protomers in the heterodimer 
and a linker with sufficient length to simultaneously attach the two 
pharmacophores to both binding sites [20,30,32]. Because pharmaco-
phores A (to bind R1) and B (to bind R2) are constantly linked forming 
the bivalent AB molecule, we cannot consider the case where A and B 
have different total concentrations (Case 2, see Section 3.2). Because of 
this, only Case 1 will be included in this study. 

An ideal bivalent AB molecule differs in binding terms from the 
combination of two monovalent molecules (A, B) in that once one of the 
two pharmacophores (say A) has bound to its corresponding protomer 
(R1), the second pharmacophore (B) has a higher probability of binding 
with respect to the monovalent case. The reason for this fact is the 
greater proximity of the free pharmacophore to the second protomer in 
the heterodimer (once the first protomer is occupied), which is caused 
by a linker with the right length. This results in an increase of global 
affinity with respect to the monovalent case, that is, in an increase of the 
α+ and β+ cooperativity rate constant parameters (defined in Fig. 1b). 
Therefore, the rate constants k3 = β+ k2 and k4 = α+ k1 in system (11) 
will have the same relative increment. Thus, if the monovalent case has 
positive cooperativity, it is clear that cooperativity in the bivalent case 
remains positive; if monovalent A, B ligands display negative coopera-
tivity then the increment of cooperativity provided by the bivalent 
ligand might or might not be sufficient to reverse the sign of the 
cooperativity. 

It is also worth noting that the possibility that bivalent ligands can 

increase the relative population of heterodimers is not contemplated 
herein because the model (Fig. 1) assumes that heterodimers are already 
preformed and so R1 and R2 monomers are not present in the system. 
This assumption precludes the complexity of monomeric and hetero-
meric receptors coexisting in the system. 

According to the previous considerations, in order to simulate the 
bivalent case (see Fig. 4), we consider k3 and k4 to be ten times greater 
for the bivalent ligand AB than for the monovalent ligands A, B (studied 
in Fig. 2). Notice that these changes do not affect the condition (k-1 k4)/ 
(k1 k-4)=(k-2 k3)/(k2 k-3) that binds the values of the rate constants at 
equilibrium [7]. Dashed curves in Fig. 4a, which includes the curves 
previously depicted in Fig. 2 (solid lines) for easier comparison, show 
faster dynamics in the bivalent case since all the species tend to reach 
their equilibrium values more rapidly. Also, curve peaks of [AR1R2] and 
[R1R2B] are lower when A and B are part of a bivalent ligand because 
AR1R2B is formed earlier. In addition, equilibrium concentrations of 
R1R2, AR1R2 and R1R2B decrease by one order of magnitude in the 
bivalent case with respect to the monovalent one. On the other hand, 
Fig. 4b shows that the fractional pharmacological response increases 
monotonically and reaches practically the same value independently of 
whether A and B are monovalent ligands or part of a bivalent compound. 
However, the equilibrium value is reached faster in the latter case. 

3.2. Case 2: Only one ligand (B) is in excess with respect to the total 
receptor concentration 

Case 2 results from the need of decreasing the concentration of one of 
the ligands (say ligand A) in the proposed two-drug combination ther-
apy. This decision can be due to the fact that ligand A exerts unwanted 
side effects when it is used as a single drug at therapeutic concentrations. 
To exemplify this, we are considering that ligand A is an opioid and that 
chronic pain is the therapeutic target. In our heterodimer model the 
compensation in ligand efficacy because of low A concentrations is ob-
tained through the allosteric effects elicited by ligand B. 

For Case 2, as mentioned in the Methods section, the mathematical 
model, system (12), is not linear but quadratic. For the linear case, we 
have shown that the existence of a single equilibrium point is guaranteed 
by definition and, using the Routh-Hurwitz criterion, we have been able 
to determine its stability for any combination of microscopic rate con-
stants. Unfortunately, for quadratic systems uniqueness of equilibria is 
not guaranteed and, moreover, the application of criteria that ensure 
their stability is much more laborious, mostly when there are so many 
parameters involved. In fact, their study is part of the study of the 
properties of reaction networks, which has been developed in the last 

Fig. 4. a) Evolution over time of the four heterodimeric species when A and B are the pharmacophores of a bivalent ligand AB in comparison with monovalent A, B 
ligands (Fig. 2). The initial condition and the parameter values are the same as in Fig. 2, except k3 and k4, which are multiplied by 10 in the bivalent case, taking now 
the values of 4 ⋅ 108 M− 1 s− 1 and 2 ⋅ 108 M− 1 s− 1, respectively. Solid lines (subscript m in concentration legends) correspond to monovalent ligands whereas dashed 
lines (subscript b in concentration legends) correspond to bivalent ligands. b) Comparison of fractional response between bivalent and monovalent ligands (see 
Fig. 3). Functional parameters are the same as in Fig. 3. It is worth noting that, after the change in k3 and k4 by increasing α+ and β+ ten times, the condition (k-1 k4)/ 
(k1 k-4) = (k-2 k3)/(k2 k-3), or α+/α-=β+/β-, is still valid. 
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half-century (see, for example, [8]). 
In this paper, we use a more parsimonious approach. Since we want 

to illustrate the combined effect of two ligands under biologically 
plausible conditions for the heterodimer, we choose a particular realistic 
set of rate constants (already shown in Fig. 2) to illustrate the study. We 
then compute the equilibria of system (12) for this particular choice of 
parameters. It can be shown (see Appendix B) that there are three 
equilibrium points. Notice that only one of them belongs to the first 
octant (i.e., x > 0, y > 0 and z > 0) and, moreover, it is stable (proved in 
Appendix B). The coordinates of this point are xeq = 4.69 ⋅ 10− 12 M, yeq 
= 2.42 ⋅ 10− 14 M, zeq = 4.69 ⋅ 10− 11 M and weq = 4.84 ⋅ 10− 11 M. 

In addition to this numerical identification and classification, we 
develop a theoretical argument that ensures that this positive equilib-
rium will persist and none of the other two can become positive by 
changing the parameter values. Note that different drugs, different 
properties of interaction between species, different initial concentra-
tions or even different experimental conditions imply different choices 
of parameters and, therefore, it is desirable to be able to guarantee that 
the results are applicable in a sufficiently wide region of the parameter 
space. In other words, a result that was only true for a specific choice of 
parameters and specific initial conditions would not be useful since any 
small variation in the experiment or any measurement error would 
invalidate the conclusions. For this purpose, we provide an analytical 
proof that there exists a positively invariant region in the first octant for 
all combinations of positive constant rate parameters (see Appendix C). 
This implies that (i) for any initial condition (initial values of the 

Fig. 5. Evolution of the concentrations of the four heterodimeric species over time when only ligand B is in excess with respect to the total receptor concentration. 
Parameter values and the initial condition are the same as in Fig. 2, except [Atot] which takes here the value of 10− 10 M. a) First 100 s. b) First 1000 s. Subfigure a) is a 
zoom of the first part of Subfigure b). 

Fig. 6. Evolution of fractional biological response E/Em over time when only 
ligand B is in excess with respect to the total receptor concentration. Parameter 
values for binding kinetics are the same as in Fig. 5, and functional parameters 
are the same as in Fig. 3. 

Fig. 7. Evolution of the fractional biological response over time when only ligand B is in excess with respect to the total receptor concentration. Parameter values for 
binding kinetics are the same as in Fig. 5, and functional parameters are the same as those in Fig. 3, except εB. a) εB = ε = 1 (B is a neutral antagonist). b) εB = 5 (B is 
an agonist). 
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concentrations) within this region, the dynamics remains inside it, and 
(ii) none of the other equilibria can enter the first octant continuously in 
parameter space. Consequence (ii) prevents from having multi-
stationarity. Once the existence of multiple stable points is excluded, 
consequence (i) tells us that, unless other more complicated behaviors 
(for instance, oscillations) occur, the positive equilibrium detected in the 
particular example will be an attractor for all trajectories, that is, its 
coordinates will be the limit value of the corresponding concentrations; 
of course, the coordinates of the equilibrium point will depend on the 
values of the parameters ki. Summarizing, with this construct we pro-
vide strong evidence that the situation described in this particular 
example is representative of the situation in the whole parameter space 
for Case 2. In this way, we ensure the robustness and applicability of our 
conclusions. 

Fig. 5 depicts the evolution over time of the concentrations of the 
four receptor species. The same parameter values as those used in Fig. 2 
are considered except for the total concentration of ligand A, which is 
now the same as that of the total receptor concentration (that is, 10− 10 

M), thus being not in excess. Although Case 2 is more complex than Case 
1 (both ligands in excess with respect to the total receptor concentra-
tion), at the end the situation of having a single biologically plausible 
equilibrium makes the general picture of the two cases qualitatively 
similar. However, there are significant differences in both the time scale 
and the variable y ([AR1R2] concentration) as it can be noticed if we 
compare Fig. 5 to Fig. 2. It is worth mentioning that since [AR1R2] (red 
curve) is very low compared to the other chemical species, the y-axis in 
Fig. 5 is in logarithmic scale in order to be able to observe the curve 

properly. 
Following the same thread as in the previous section, binding ki-

netics can be connected to pharmacological response through the 
transduction function of the generated stimulus S (see equations (13) 
and (14)). Fig. 6 depicts the fractional response for this situation 
assuming the same functional parameters as those used in the previous 
example. 

It can be seen that at t = 0 the same basal response as in the previous 
case is found (E/Em = 0.5). Interestingly, a decrease of the response is 
now observed. This decrease can be explained by the formation of 
[R1R2B], with B acting as an inverse agonist. The very low concentration 
of [AR1R2] makes irrelevant its contribution to function. The fractional 
response decreases until AR1R2B, which behaves as an agonist, coun-
teracts the effect of R1R2B. Finally, as time increases, an equilibrium 
value reflecting partial agonism is obtained. 

Of note, the minimum described in Fig. 6 disappears if we consider 
that ligand B is a neutral antagonist (Fig. 7a) or an agonist (Fig. 7b). In 
both cases, fractional response increases monotonically until a plateau is 
reached. The difference between these two situations lies in the value of 
the plateau and the time required to reach it: if B is an agonist (εB > ε), 
the plateau is reached faster and takes almost the value of the maximum 
fractional response (1); however, if B is a neutral antagonist (εB = ε), 
then the plateau is reached more slowly and gets a value a bit lower 
(around 0.96). 

3.2.1. The ligand that is not in excess is an endogenous ligand 
The examples developed above have been proposed under the 

Fig. 8. Evolution of the four heterodimeric species over time under the condition that A is an endogenous ligand and then is already present in the system at t = 0. 
The new initial condition is (x0, y0) = (9.902 ⋅ 10− 11 M, 9.805 ⋅ 10− 13 M). Parameter values are the same as in Fig. 5. a) First 100 s. b) First 1000 s. Subfigure a) is a 
zoom of the first part of Subfigure b). 

Fig. C1. Tetrahedral positively closed invariant region for the two pharmacological conditions described above: (a) both ligands are in excess (Case 1) and (b) only 
one of them is in excess (Case 2). Blue lines represent the three coordinated axes and the green triangle represents the intersection of the plane ax + by + cz = d with 
the three coordinate planes. Red stars represent equilibrium points (attractors, in both cases). 
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assumption that A and B are exogenous ligands and, because of that, the 
receptor is empty at t = 0. However, it can be considered that one of the 
ligands, for instance, the one at low concentration (ligand A), is an 
endogenous ligand and, for this reason, [AR1R2] is not zero at t = 0. 
Some examples of this situation could be the endocannabinoid [26] or 
the endogenous opioid [2] systems. We will assume, as above, that B is 
added externally. 

We can solve the system assuming that at t = 0 there is an equilib-
rium between the endogenous ligand A and the receptor heterodimer 
R1R2, which can be represented as: 

A+R1R2 ⇄
k1

k− 1

AR1R2 (15)  

The time dynamics of this binary binding process is described by 

dx
dt

= k− 1([Rtot ] − x) − k1x(x + [Atot ] − [Rtot ]). (16)  

Since this process is supposed to be at equilibrium, the initial condition 
(x0, y0, 0) for the process in which B is added externally is obtained by 
solving for x the right-hand side of equation (16) and using that the 
conservation law x0 + y0 = [Rtot]: 

x0 =
k− 1 + k1[Atot ] − k1[Rtot ] −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
k− 1 + k1[Atot ] − k1[Rtot ]

)2
+ 4k1k− 1[Rtot ]

√

− 2k1
,

(17)  

y0 = [Rtot]− x0. (18)  

As we can observe in Fig. 8, and compared to Fig. 5, differences are 
barely perceptible, apart from the new y0. This is due to the low con-
centration of ligand A with respect to the total receptor concentration 
(not many receptors will be previously half-occupied by A), and also 
because the system dynamics is the same: the system tends to reach its 
unique equilibrium point as time goes on. 

4. Discussion 

Drug combination therapy is a logical approach to address the 
complexity of many diseases. This complexity may result from the in-
teractions between cellular components of an organism that form 
extensive networks. These networks regulate subcellular functions that 
are characteristic of both health and disease. Networks can be at the 
cellular, tissue and organ levels. Drugs typically act at the molecular 
level by changing the activity of the molecular components, and this 
change translates to higher levels of organization correcting organismal 
malfunctions in disease states, and giving rise to the field of systems 
pharmacology [22]. Cooperativity effects between two drugs through 
physical interactions between the two protomers that form a receptor 
heterodimer can be considered the simplest case of systems 
pharmacology. 

There is increasing evidence for the existence of receptor oligomer-
ization and, in particular, of receptor heterodimerization (see [9] and 
references therein), although this proposal has given rise to intense 
debates because class A GPCRs can be functional as monomers [4,23]. 
Thus, receptor heteromerization can be considered as a particular case 
of allosterism through protein–protein interactions that are transient in 
Class A GPCRs and stable in Class C GPCRs [25,28,29]. Nevertheless, 
caution should be taken when hypothesizing receptor heteromerization 
from functional studies because, as stated in [31], crosstalk can result 
not only from receptor oligomerization, but also from colocalized re-
ceptor sharing signaling pathways, or from synergistic regulation of 
signaling crossroads, independently of oligomerization. 

Being aware of the complexity of GPCR signaling and the many 
structural and functional components involved in cellular networks, the 
time-dependent model for a ligand-receptor heterodimeric receptor 

included in this article may represent a significant contribution to the 
field. The model is of general applicability to any combination of re-
ceptors addressing any disease but to exemplify we have focused on 
chronic pain and, in particular, on heterodimers in which one of the 
protomers is MOP. Some studies can be found in the literature exploring 
MOP heteromerization by using bivalent ligands constituted by a MOP 
selective agonist, a pharmacophore selective for the other protomer and 
a spacer connecting both. These studies included amongst others the 
MOP-DOP [6], the MOP-CB1 [24] and the MOP-mGlu5 [1] hetero-
dimers. Administration of bivalent ligands targeting MOP-DOP, MOP- 
CB1, or MOP-mGlu5 heteromers produced antinociception that was 
greater than that observed with morphine but without side effects such 
as tolerance, dependence, or respiratory depression [15]. Interestingly, 
in these three cases the pharmacophore selective for the partner proto-
mer of MOP in the heterodimer was an inverse agonist. It is expected 
that these combinations of ligands with an agonist for R1 and an inverse 
agonist for R2 would lead to an asymmetric R1*R2 active state (R1 active 
and R2 inactive) with R1 being MOP and R2 the partner protomer. It can 
be proposed that the inverse agonist bound-R2 inactive protomer sta-
bilize the agonist-bound R1 active protomer leading to a structural 
heterodimer with distinct functional properties. Thus, it can be consid-
ered that R2, and with greater potency the inverse agonist-bound R2, acts 
as an allosteric modulator of the agonist-bound R1. Interestingly, and in 
line with this proposal, a combination of an mGlu2 (a Class C GPCR) 
agonist with a 5HT2AR (a Class A GPCR) inverse agonist was suggested 
as a potential drug combination therapy for schizophrenia patients for 
whom a suboptimal signaling balance between Gi and Gq proteins exists 
[10]. Of note, yet in an homodimeric context, an insightful modeling 
analysis on the asymmetric/symmetric activation of dimeric receptors 
can be found in [33]. See also [40] for the modeling of the binding and 
function of a heterodimeric receptor at equilibrium and [14] for an 
analysis of the function of receptor oligomers by operational models of 
agonism. 

In this article we propose a model for the time-dependent ligand- 
receptor binding kinetics and functionality of a preformed hetero-
dimeric receptor R1R2 that includes two ligands, A and B, that bind R1 
and R2, respectively. The system was analyzed under two conditions: A 
and B are in excess with respect to the total receptor concentration (Case 
1) and only one ligand, say B, is in excess (Case 2). Because of the data on 
bivalent ligands described above, we decided to perform our simulations 
initially assuming that ligand A is an agonist that binds to the first 
protomer R1 (MOP) and B is an inverse agonist that binds to the second 
protomer R2. In a second set of simulations, and to illustrate some of the 
varying synergistic effects that B may exert on the observed response, B 
was given intrinsic efficacies of a neutral antagonist or an agonist 
without changing the rest of the parameters. As a particular case of Case 
2, the possibility that the ligand that is not in excess is an endogenous 
ligand was also considered (section 3.2.1.). Finally, the situation in 
which A and B are part of a bivalent ligand (section 3.1.1.) was exam-
ined in comparison with Case 1 in which A and B are monovalent 
ligands. 

For Case 1, it can be seen that the doubly-occupied heterodimer, 
AR1R2B, tends to reach almost the 100 % of the total receptor concen-
tration as time increases (Fig. 2), and this is achieved through the pre-
vious formation and disappearance of the singly-occupied receptors, 
AR1R2 and R1R2B, which both reach a concentration peak. The differ-
ence in shape of the two peaks is due to the difference in the microscopic 
dissociation rate constants k-1 and k-2 of the singly-bound receptors, 
considering that they bear the same values for the association rate 
constants k1 and k2. Because residence time is higher for lower values of 
the dissociation rate constant, and the microscopic dissociation rate 
constant of R1R2B (k-2) is lower than that of AR1R2 (k-1), the peak of 
R1R2B is higher and vanishes more slowly than that of AR1R2. 

For Case 2, the difference in the initial concentrations of A (10− 10 M) 
and B (10− 8 M) affects the relative binding of both drugs to the heter-
odimer (Fig. 5). At the beginning, ligand B is the first to bind R1R2 and A 
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binds later. Because of the difference in ligand concentrations and being 
k1 = k2 and k-2 < k-1, a big difference in the shape of the curves of the 
singly-bound receptors is observed, with a high peak for R1R2B at the 
beginning of this simulation. After that, [R1R2B] decreases because A 
binds, causing a slow rising of [AR1R2B]. This slower time dynamics of 
the system for reaching the asymptotic value of [AR1R2B] (around 1000 
s) compared to the corresponding one in Fig. 2 (around 40 s) can be 
explained through the lower concentration of ligand A: since B is more 
abundant (by two orders of magnitude), encounters between A and re-
ceptors are not as frequent as with ligand B, so it takes longer for A to 
bind. 

Comparing Figs. 5 and 6, it can be seen that the time value for the 
maximum in [R1R2B] coincides with the minimum for the biological 
effect. This is because B is an inverse agonist (the intrinsic efficacy of 
R1R2B (εB) is lower than that of R1R2), leading to a decrease of the basal 
response when the predominant receptor species is R1R2B. When 
[R1R2B] decreases and [AR1R2B] forms, the effect recovers and keeps 
increasing until equilibrium is reached. The intrinsic efficacy of the 
doubly-occupied heterodimer AR1R2B is higher than that of R1R2, which 
means that the combination of ligands A and B behaves as an agonist 
entity and causes an effect higher than the basal. The overall effect 
elicited by the heterodimer due to the combination of the two ligands is 
similar to the effect of a partial agonist in a single receptor, because it is 
higher than that resulting from constitutive receptor activity, but it does 
not reach the maximum possible effect (Em). This is because at equi-
librium there is a mixture of R1R2B (inverse agonist) and AR1R2B 
(agonist); notice that [AR1R2] is negligible. 

Simulations under Case 2 have been performed under the premise 
that A is an opioid drug whose concentration is necessary to lower 
because of its unwanted side effects. This has been done by adding a 
second drug B that binds the partner protomer in a heterodimeric re-
ceptor that although is an inverse agonist for the single R2 receptor 
behaves as an agonist when combined with A in the receptor hetero-
dimer. Parameter values have been chosen to illustrate the many bind-
ing and functional responses that can be obtained. Experiments with 
controlled experimental design may help to obtain realistic and inter-
pretable parameter values. 

Case 2 was extended to consider also the situation in which A is not a 
compound externally added to the system but an already present 
endogenous ligand (section 3.2.1.). In this case, at t = 0 the total re-
ceptor concentration includes both the free R1R2 and the ligand-bound 
AR1R2 at equilibrium. Simulations were performed under this premise, 
which can be useful for therapeutic purposes. It can be agreed that 
taking advantage of all the chemical resources endogenously present in 
the system to avoid an excessive manipulation of living organisms seems 
a prudent pharmacotherapeutic strategy that, in principle, should be 
more devoid of side effects. 

The possibility that A and B are not independent molecules but part 
of a bivalent ligand was also considered (section 3.1.1.) by increasing 
the cooperativity of binding (and so, the affinity) of the free pharma-
cophore when the other pharmacophore is already bound. This is due to 
the forced proximity of the free pharmacophore to its protomer in the 
heterodimer. The simulations performed showed faster dynamics for the 
bivalent case than for the monovalent one: the doubly-bound AR1R2B 
receptor species is formed more rapidly and the peak values of the 
singly-bound receptor species are lower. The binding effects associated 
to bivalent ligands are also reflected in the pharmacological response as 
simulations show (Fig. 8b). 

Our model relates to the two-ligand and one-receptor model pro-
posed in [37], where both ligands bind to the same receptor R (here, we 
consider two different receptors) but also allowing binding of a same 
ligand to two different receptor sites. Consequently, their model is a five- 
dimensional ODE system whose variables correspond to the species AR, 

BR, ARA, ARB and BRB. The two models complement each other. In 
particular, constraining our model to the case R1 = R2 and preventing 
the ligands A and B from competing for the same receptor, we obtain a 
subcase of White & Bridge’s model. For this case, we have tested the 
coincidence of the solutions. However, the condition imposed in our 
study that A and B bind specifically to two different receptors, R1 and R2, 
seems more consistent with the application to drug combination therapy 
targeting two different receptors. 

4.1. Conclusion 

We have added the time variable to a previous heterodimeric re-
ceptor model at equilibrium [40]. The time-dependent model shows a 
single biologically plausible stable equilibrium point which lies in an 
invariant region for any combination of the parameter values, that is, 
any combination of microscopic rate constants. Hence, the results ob-
tained here ensure a typical pharmacological scenario when exploring 
the optimal set of rate constants for a specific drug combination therapy 
[19]. The time dynamics of the biological response showed different 
behaviors depending on the intrinsic efficacies of the four heterodimeric 
species, and this can be used to explore the potential utility of drug 
combinations. This is particularly interesting when a dose reduction is 
desired for a drug causing unwanted side effects (such as an opioid drug) 
but avoiding the loss of its therapeutic potential (analgesic in the context 
of this study). 
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Appendix A. Uniqueness and stability of the equilibrium for case 1 

We provide the technical details that prove that system (11) has a unique equilibrium point, we give its explicit expression, and we prove, using the 
Routh-Hurwitz theorem, that this equilibrium point is always stable. 

System (11) can be expressed as X’ = MX + b, where 

M :=

⎛

⎝
− [Atot ]k1 − [Btot]k2 k− 1 k− 2

[Atot ]k1 − k− 3 − k− 1 − k− 3 − [Btot ]k3 − k− 3
[Btot]k2 − k4 − k4 − k− 4 − k− 2 − [Atot]k4

⎞

⎠,

b :=

⎛

⎝
0

k− 3[Rtot ]

k− 4[Rtot ]

⎞

⎠.

It is easy to see that the determinant of the system is 

det(M) = − [Atot]
2
[Btot]k1k3k4 − [Atot ][Btot ]

2k2k3k4 − [Atot]
2k1k4k− 3 − [Atot][Btot ]k1k3k− 4 − [Atot ][Btot ]k1k3k− 2 − [Atot][Btot ]k2k4k− 1 − [Atot ][Btot ]k2k4k− 3

− [Btot ]
2k2k3k− 4 − [Atot ]k1k− 2k− 3 − [Atot ]k1k− 2k− 4 − [Atot]k4k− 1k− 3 − [Btot ]k2k− 1k− 3 − [Btot ]k2k− 1k− 4 − [Btot ]k3k− 2k− 4 − k− 1k− 2k− 3 − k− 1k− 2k− 4  

which is clearly different from zero because all parameters are positive. Then, it has a unique equilibrium point x0. Tedious but straightforward 
computations lead to the following expressions for the three components of x0 = (x0

(1), x0
(2), x0

(3)): 

x(1)
0 =

N(1)
0

D0  

where 

N(1)
0 = [Rtot](k− 1k4k− 2 + k− 1k− 2k− 3 + [Atot]k− 1k4k− 3 + [Btot ]k3k4k− 2)

and 

D0 = k4k1k2+k1k2k3+[Atot]
2k1k4k3+[Btot ]

2k2k3k4+[Atot ]k1k4k2+[Atot]k1k2k3+[Atot ]k4k1k3+[Btot]k2k4k1+[Btot ]k3k4k2+[Btot ]k2k1k3+[Atot ][Btot ]k1k3k4

+[Atot ][Btot ]k1k3k2+[Atot][Btot]k2k4k1+[Atot ][Btot ]k2k4k3+[Atot]
2
[Btot]k1k3k4+[Atot ][Btot ]

2k2k3k4;

(A1)  

x(2)
0 =

N(2)
0

D0
,

where 

N(2)
0 = [Rtot]

(
[Atot ]

2k4k1k− 3 + [Atot ]k4k1k− 2 + [Atot]k1k− 2k− 3 + [Atot ][Btot ]k2k4k− 3

)
; (A2) 

and 

x(3)
0 =

N(3)
0

D0
,

where 

N(3)
0 = [Rtot]

(
[Btot]

2k2k3k4 + [Btot ]k− 1k2k− 3 + [Btot]k− 1k2k4 + [Atot ][Btot ]k3k4k1

)
. (A3)  

We compute the Jacobian matrix of the system [35] in order to study the local behavior of the equilibrium point x0. In fact, since the system is linear, 
the Jacobian matrix is constant and equals M: 

J(x0) = M =

⎛

⎝
− [Atot]k1 − [Btot]k2 k− 1 k− 2

[Atot ]k1 − k− 3 − k− 1 − k− 3 − [Btot ]k3 − k− 3
[Btot ]k2 − k4 − k4 − k− 4 − k− 2 − [Atot]k4

⎞

⎠ (A4)  

To avoid cumbersome notation, we define: a = [Atot]k1, b = [Btot]k2, c = k-1, d = k-2, e = k-3, f = [Btot]k3, g = k4 and h = [Atot]k4. Thus, 

J(x0) =

⎛

⎝
− (a + b) c d

a − e − (c + e + f) − e
b − g − g − (d + g + h)

⎞

⎠. (A5)  

The local stability of the equilibrium point is decided from the eigenvalues (λ), that is, the solutions of the characteristic polynomial p(λ) = det(J(x0) – 

A.J. Ortiz et al.                                                                                                                                                                                                                                  



Biochemical Pharmacology 225 (2024) 116299

11

λId) = 0, where Id is the 3x3 identity matrix, and det is the determinant. Substituting (A5) in p(λ), we get 

p(λ) = − λ3 + p1λ2 + p2λ+ p3,

being 

p1 = − (a + b + c + d + e + f + g + h),
p2 = − (ad + bc + ae + af + be + cd + ag + bf + ce + ah + bg + de + bh + cg + df + ch + dg + eh + fg + fh),
p3 = − (ade + bce + adf + adg + bcg + cde + bch + aeh + afg + cdg + afh + beh + bfg + bfh + ceh + dfg).

(A6)  

We then apply the Routh-Hurwitz Criterion (see, for instance, [38]) to analyze the stability of the equilibrium point. This stability criterion stablishes 
that the roots of a polynomial have negative real part (which ensures stability) if and only if p1 < 0, p2 < 0, p3 < 0 (which are true because all 
parameters a, b, c, d, e, f, g, h are positive) and p1p2 > -p3 (which is also true for the same reason). 

Appendix B. Equilibria and their stability character for a specific example of case 2 

The quadratic ODE system (12) has three different equilibrium points, and because of the difficulties of using general formulas in this case, we 
substitute the parameter values (already used in Fig. 5) into the system. By equating to zero the right-hand side expressions of system (12), we get the 
following three equilibria: 

x(1)
0 =

(
− 2.1617⋅10− 8, 5.6234⋅10− 9, 8.6168⋅10− 9), (B1)  

x(2)
0 =

(
− 9.6873⋅10− 12,1.0323⋅10− 13, − 9.6873⋅10− 11), (B2)  

x(3)
0 =

(
4.6898⋅10− 12,2.4194⋅10− 14, 4.4898⋅10− 11). (B3)  

Note that, whereas x0
(3) belongs to the first octant (all coordinates are positive), the other two equilibria have some negative coordinates. Thus, x0

(3) is 
the only biologically plausible equilibrium. Nevertheless, we classify all of them to get a general picture. We first compute the general Jacobian matrix: 

J(x0) =

⎛

⎝
− k1([Atot ] − [Rtot ] + 2x + z) − [Btot]k2 k− 1 k− 2 − k1x

k1([Atot ] − [Rtot ] + 2x + z) − k− 3 − k− 1 − k− 3 − [Btot ]k3 − k− 3 + k1x
[Btot ]k2 − k− 4 − k4z − k4 − k− 4 − k− 2 − k4([Atot] − [Rtot] + x + 2z )

⎞

⎠ (B4)  

After substituting (x,y,z) in (B4) by the values of x0
(1), x0

(2) and x0
(3), we get: 

J
(

x(1)
0

)
=

⎛

⎝
0.2462 0.1 0.2262
− 0.3464 − 0.5002 − 0.2164
− 0.0733 − 0.001 0.0767

⎞

⎠ (B5)  

J
(

x(2)
0

)
=

⎛

⎝
− 0.0988 0.1 0.0101
− 0.0014 − 0.5002 − 0.0003
0.1009 − 0.001 − 0.0069

⎞

⎠ (B6)  

J
(

x(3)
0

)
=

⎛

⎝
− 0.1006 0.1 0.01
0.0004 − 0.5002 − 0.0002
0.0981 − 0.001 − 0.013

⎞

⎠ (B7)  

By solving the characteristic polynomial, we get the eigenvalues (denoted by λ(j)i ) corresponding to each equilibrium point. For x0
(1), we obtain the 

approximate values: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ(1)1 = − 0.4485,
λ(1)2 = 0.1356 + 0.1079i,
λ(1)3 = 0.1356 − 0.1079i.

(B8)  

For x0
(2), the eigenvalues are, approximately: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ(2)1 = − 0.1091,
λ(2)2 = 0.003,
λ(2)3 = − 0.5;

(B9)  

and for x0
(3): 

A.J. Ortiz et al.                                                                                                                                                                                                                                  



Biochemical Pharmacology 225 (2024) 116299

12

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ(3)1 = − 0.003,
λ(3)2 = − 0.1104,
λ(3)3 = − 0.5003.

(B10) 

The three equilibrium points are hyperbolic because none of their eigenvalues present zero real part. The first equilibrium point (x0
(1)) is a focus- 

saddle point because it has one real eigenvalue with negative sign and a pair of complex conjugate eigenvalues with positive real part. This type of 
equilibrium is always unstable. The second equilibrium point (x0

(2)) is a saddle point because its three eigenvalues are real but do not have the same 
sign, and it is also an unstable equilibrium point. The three eigenvalues associated to the third equilibrium point (x0

(3)) are real and negative, and 
consequently, it is a stable node. Therefore, the unique stable equilibrium point is the third one, while the other two are unstable. 

Summarizing, equilibria x0
(1) and x0

(2) are not biologically plausible because some of their coordinates are negative (recall that variables x, y and z 
have to be necessarily positive because they are concentrations). Therefore, x0

(3) is the only biologically significant equilibrium point of the system; 
moreover, it is stable and so all trajectories with initial conditions close enough to x0

(3) tend to this point as time goes to infinity. In Appendix C, we 
prove, in addition, that the basin of attraction of x0

(3) (the set of initial conditions whose solutions tend to x0
(3)) is large and we give arguments to support 

that it is indeed the unique attractor for all values of the parameters, thus ruling out also multistationarity. 

Appendix C. Existence of a unique biologically plausible equilibrium point 

We will base our proof on showing the existence of a so-called invariant region in the phase space, that is, the space of the concentrations of the 
species (for system (12), it is a three-dimensional space). A region Ω is positively invariant if all trajectories whose initial condition belongs to Ω remain 
in Ω for all t > 0. A natural way to define this region is by searching for a plane of the form ax + by + cz = d that forms a tetrahedron with the three 
coordinated planes x  = 0, y = 0 and z = 0 (remind that x, y and z are the concentrations of the different heterodimeric species). Since we want this 
invariant region to be in the first octant, we can assume that a, b, c, d ≥ 0 without loss of generality. Therefore, we consider the region 

Ωa,b,c,d = {(x, y, z) : ax + by + cz ≤ d, x ≥ 0, y ≥ 0, z ≥ 0 for a, b, c, d ≥ 0}. (C1)  

To simplify notation, we drop the subscripts of Ωa,b,c,d from now on. In order to proof that Ω is a positively invariant region, we need to see that the 
solutions (x(t), y(t), z(t)) of system (12) point to the interior of Ω when crossing the surfaces {x = 0} ∩ Ω, {y = 0} ∩ Ω, {z = 0} ∩ Ω and {ax + by + cz =
d} ∩ Ω. 

For the three coordinated planes, it is equivalent to see that x’ > 0, y’ > 0 and z’ > 0 when x  = 0, y = 0 and z = 0, respectively, in system (4). For 
instance, for x  = 0, we have that x’ = k-1y + k-2z which is clearly positive on {x = 0} ∩ Ω. In a similar way, we can check that it also happens with y’ 
and z’. 

In order to see that the solutions point to the interior of Ω for the non-coordinate plane ax + by + cz = d, we need to prove that 

(xʹ, yʹ, ź )⋅(a, b, c) < 0 for x, y, z ≥ 0 (C2)  

where the dot between the two vectors stands for the scalar product. 
We are going to prove this property for (a,b,c) = (1,1,1) (other choices could work as well) and let d be free. Direct computations give 

(xʹ, yʹ, ź )⋅(1,1, 1) = − (k− 3 + k− 4)(d − [Rtot]) − k4[A]z − k3[B]y (C3)  

Observe that all terms in this expression are negative whenever d ≥ [Rtot]. Thus, the desired property follows under this condition and we can assert 
that any region 

Ωd = {(x, y, z) : x + y + z ≤ d, x ≥ 0, y ≥ 0, z ≥ 0, d ≥ [Rtot]} (C4)  

is positively invariant. Fig. C1 shows a typical tetrahedral region Ωd together with the equilibrium point. 
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