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Abstract
Introduction The unbound brain-to-plasma partition coefficient  (Kp,uu,BBB) is an essential parameter for predicting central 
nervous system (CNS) drug disposition using physiologically-based pharmacokinetic (PBPK) modeling.  Kp,uu,BBB values for 
specific compounds are however often unavailable, and are moreover time consuming to obtain experimentally. The aim of 
this study was to develop a quantitative structure–property relationship (QSPR) model to predict the  Kp,uu,BBB and to dem-
onstrate how QSPR-model predictions can be integrated into a physiologically-based pharmacokinetic model for the CNS.
Methods Rat  Kp,uu,BBB values were obtained for 98 compounds from literature or in house historical data. For all compounds, 
2D and 3D physico-chemical and structural properties were derived using the Molecular Operating Environment (MOE) 
software. Multiple machine learning (ML) regression models were compared for prediction of the  Kp,uu,BBB, including ran-
dom forest, support vector machines, K-nearest neighbors, and (sparse-) partial least squares. Finally, we demonstrate how 
the developed QSPR model predictions can be integrated into a CNS PBPK modeling workflow.
Results Among all ML algorithms, a random forest showed the best predictive performance for  Kp,uu,BBB on test data with 
 R2 value of 0.61 and 61% of all predictions were within twofold error. The obtained  Kp,uu,BBB were successfully integrated 
into the LeiCNS-PK3.0 CNS PBPK model.
Conclusions The developed random forest QSPR model for  Kp,uu,BBB prediction was found to have adequate performance, 
and can support drug discovery and development of novel investigational drugs targeting the CNS in conjunction with CNS 
PBPK modeling.
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Introduction

Central nervous system (CNS) active drugs have to cross the 
blood–brain barrier (BBB) to exert their effect. This barrier 
may have an important impact on CNS drug distribution, 
which is one of the reasons contributing to the high attrition 
rate in CNS drug development [1]. Therefore, it is important 
to understand the CNS penetration of drugs. In this context, 
the ratio of the unbound drug concentrations in brain extra-
cellular fluid  (brainECF) over plasma at steady state, or the 
 Kp,uu,BBB, is an essential parameter to predict CNS drug dis-
position. It is important to distinguish between  Kp,uu,BBB and 
 Kp,uu,brain, as the latter is based on unbound concentrations of 
the brain, to which both extra- and intracellular concentra-
tions contribute [2], so less specifically reflecting BBB trans-
port. The  Kp,uu,BBB is an indicator regarding the dominant 
transport mechanism of the compound, where a value around 
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1 indicates mainly passive transport, while  Kp,uu,BBB values 
smaller or larger than 1 indicate dominant active efflux or 
influx BBB transport processes, respectively.

To determine the  Kp,uu,BBB, various techniques have been 
proposed. In vivo microdialysis is considered the gold stand-
ard due to its direct in vivo measurement of unbound concen-
tration–time profiles in brain extracellular fluid  (brainECF) 
and in plasma, to determine clearance of the unbound drug 
into  (Clin) and clearance of the unbound drug out of the 
 brainECF  (Clout) to determine  Kp,uu,BBB in the full physiologi-
cal setting [2–4]. Though being the best, it is not the easiest 
technique to be used, and also is restricted to drugs with not 
too high lipophilicity. Another approach to determine the 
 Kp,uu,brain, is the CMA approach [5] that utilizes an in vivo 
neuro PK study with total brain and total plasma concentra-
tions to first establish the  Kp,brain. Next, the fraction unbound 
in plasma  (fu,plasma) and fraction unbound in brain  (fu,brain) are 
determined in vitro, and used to calculate  Kp,uu,brain. Using 
the volume of distribution in brain  (Vu,brain) instead of  fu,brain 
results in an estimation of  Kp,uu,BBB. So, in this approach, for 
determining  Kp,uu,BBB, a number of parameters are obtained 
outside the intact physiological context. The full physiologi-
cal context in which microdialysis-derived  Kp,uu,BBB values 
are obtained, makes such  Kp,uu,BBB values more physiologi-
cally relevant.

The  Kp,uu,BBB is a key parameter to enable the prediction 
of CNS pharmacokinetic profiles using CNS physiologi-
cally-based pharmacokinetic (PBPK) modelling. CNS PBPK 
modelling is a relevant computational approach to predict 
(unbound) drug distribution in the CNS, and to translate 
expected CNS drug disposition between species. We have 
previously developed and validated the LeiCNS-PK3.0 CNS 
PBPK model to predict unbound drug concentration–time 
profiles in multiple physiological compartments of the CNS 
[6]. However, CNS PBPK models require  Kp,uu,BBB values 
to be provided as input parameters. To this end, QSPR mod-
els are relevant to generate  Kp,uu,BBB values as input to the 
LeiCNS-PK3.0 model, when these are not available from 
experimental sources.

Although various in vitro and in vivo methods for 
 Kp,uu,BBB determination are available, for the majority of 
existing drugs as well as for novel investigational com-
pounds,  Kp,uu,BBB values are unavailable. Quantitative struc-
ture–property relationship (QSPR) models link structural 
features of molecules with the pharmacological properties, 
and can be used to predict  Kp,uu,BBB. Several QSPR models 
have been developed to predict the total concentration of 
drug in the brain, based on total concentration in the blood 
at equilibrium (logBB) [7]. However, total concentration 
based models lack pharmacological relevance as these do 
not include the unbound concentration in  brainECF, which 
is responsible for the pharmacological effect. QSPR models 
using various machine learning algorithms which predict 

 Kp,uu,BBB, and do consider unbound drug concentrations 
in the  brainECF, based on data produced using the CMA 
approach have been previously described [8–15]. In addi-
tion, two QSPR models for  Kp,uu,BBB have combined data 
generated using both in vivo microdialysis and the CMA 
approach [9, 16]. Finally, a QSPR model [16] was previously 
developed for datasets with  Kp,uu,BBB values obtained by in 
vivo microdialysis study alone. However, while very elegant, 
this study used a relatively small sample size while more val-
ues are available. Most existing QSPR models for predicting 
 Kp,uu,BBB are based on CMA derived values, complicating 
interspecies translatability. The scarcity of models utilizing 
microdialysis data, despite their higher physiological rel-
evance, point out the need for QSPR models that prioritize 
microdialysis determined  Kp,uu,BBB values.

The aim of this study was to develop a rat QSPR model 
to predict the  Kp,uu,BBB values based on 98 in vivo microdi-
alysis-derived  Kp,uu,BBB values, and to compare the predic-
tive performance for multiple machine learning algorithms. 
Moreover we aimed to demonstrate how the developed 
QSPR model can be integrated into the LeiCNS-PK3.0 CNS 
PBPK model.

Methods

A systematic database of microdialysis-based  Kp,uu,BBB 
values was created. For each compound, physico-chemical 
parameters were derived. The data was then split into train 
and test sets, with the train set being used to test several 
machine learning algorithms. The final model was evaluated 
and applied within the LeiCNS-PK3.0 model for selected 
compounds (Fig. 1).

Data Set Collection of  Kp,uu,BBB

To acquire in vivo measured  Kp,uu,BBB values, an exten-
sive literature research was performed on studies utilizing 
the microdialysis approach in rat CNS. The microdialysis 
method was considered adequate if the microdialysis probe 
collected dialysate of the  brainECF were corrected with the 
relative recovery, to convert the drug concentrations to 
unbound.  Kp,uu,BBB values were either directly taken from 
the publications or calculated from reported unbound con-
centrations at steady state in  brainECF  (CECF,u,SS) and in 
plasma  (Cplasma,u,SS) (Eq. 1). The  Kp,uu,BBB values could also 
be derived, by calculating using the clearance in and out 
of the  brainECF by the  Clin over  Clout. (Eq. 2) or by the area 
under the curve (AUC) of unbound compounds, from time-
point 0 to infinity, in  brainECF (AUC ECF,u,0→∞) and plasma 
(AUC plasma,u,0→∞) (Eq. 3). To enlarge the input dataset for 
building the QSPR model, microdialysis studies measuring 
the AUC to a specific timepoint instead of calculating to 
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infinity were included. The collected  Kp,uu,BBB values were 
log transformed for the use in QSPR model development.

Calculating of Physico‑Chemical Properties

The dataset of physico-chemical properties of the drugs 
was generated using MOE (version 2024.0601) [17]. The 
3D molecular structures of the compounds were obtained 
in MOE software by applying 3D coordinates as signed dis-
tance field (sdf) obtained from PubChem 2023 [18]. Only for 
DAMGO and digoxin the 2D coordinated were used since 
these compounds were unstable or contained to many atoms 
respectively to generate the coordinates. The compounds 
were cleaned using the function “wash”, with protonation 
set to dominant at pH 7.4. This step was done to clean the 
compound by disconnecting metal groups in simple salts and 
keeping only the large molecular fragments and strong acids 
were deprotonated and strong bases protonated. As last step, 
to ensure that each compound is in its stable (lowest energy) 
conformation and thereby enhancing the quality and reliabil-
ity of the compound descriptors an “energy minimization” 
step was conducted. During this process the compounds 

(1)Kp,uu,BBB =

CECF,u,ss

Cplasma,u,ss

(2)Kp,uu,BBB =

Clin

Clout

(3)Kp,uu,BBB =

AUCECF,u,0→∞

AUCplasma,u,0→∞

were subjected to energy minimization by using the Merck 
Molecular Force Field 94 (MMFF94x) with a gradient of 
0.01 RMS Kcal/mol/A2. The MMFF94x force field is cho-
sen over other force fields since it has a higher accuracy for 
small molecular compounds for which the LeiCNS-PK3.0 is 
developed [19, 20]. Energy minimization using MMFF94x 
optimizes the 3D structure of the compound, ensuring that 
it adopts a stable, low-energy conformation. The minimized 
structure reflects better the actual shape and distribution of a 
compound in a biological system. Moreover, the minimized 
structure allows for a more accurate calculation of phys-
icochemical descriptors. A total of 375 physico-chemical 
properties were calculated.

QSPR Model Development

Data Splitting and Preprocessing

The data set containing the  logKp,uu,BBB values and the phys-
ico-chemical properties was split into 80% to the train set 
and 20% into the test set by a random split. For compounds 
with a high similarity to the test set (Tanimoto similar-
ity > 0.7 based on RDKit (2024.3.5) [21]) topological fin-
gerprints were excluded from the training set. The remaining 
compounds were used for model building. Feature selec-
tion was performed on the training set. First the descriptors 
with zero variance were removed. Followed by calculating, 
identifying and removing highly correlated descriptor with 
Pearson correlation with a threshold of 0.8. After removing 
the near zero and highly correlated descriptors, one final 
step of feature selection on the remaining descriptors was 
conducted with the Boruta feature selection algorithm (ver-
sion 8.0.0, maxRuns 500) on the training set. The Boruta 

Fig. 1  Overview of the quan-
titative structure–property 
relationship (QSPR) model 
development and application. 
Left panel shows the steps taken 
to develop the QSPR model by 
first data collection, analyzing 
the physico-chemical properties, 
dataset splitting, model training 
by various machine learning 
algorithms and evaluating final 
model on test set. Right panel 
shows the selected final QSPR 
model and the application to the 
central nervous system (CNS) 
physiologically based pharma-
cokinetic model (PBPK), the 
LeiCNS-PK-3.0 [6].
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feature selection algorithm identifies relevant features by 
iteratively comparing the importance of actual features with 
randomized shadow features, retaining those with consist-
ently higher importance than the shadows [22]. To evaluate 
the overlap of the chemical space of the train and test set a 
principal component analysis (PCA) on the chemical feature 
matrix was performed.

Machine Learning Algorithms

Machine learning models were implemented in R (version 
4.4.0) using the packages caret (version 6.0.94), kernlab 
(version 0.9.32) and spls (version 2.2.3), based on differ-
ent machine learning algorithms. The feature values used 
as input were standard scaled. Several QSPR algorithms 
were evaluated, including random forest (RF), support vec-
tor machines with linear kernel (SVM), K-nearest neighbors 
(KNN), sparse partial least squares (SPLS) and partial least 
squares (PLS). For every algorithm, tuning parameters were 
optimized by defining a tuning grid for the mtry for RF, costs 
(C) for SVM, k for KNN, eta and K for SPLS and lastly 
ncomp for PLS. The algorithms are further modelled using 
tenfold cross validation and 200 repeats.

QSPR Model Evaluation

The predictive performance of the five different machine 
learning algorithms were compared, based on the average 
cross-validated predictive performance  (q2), and the ML 
algorithm with the best predictive performance was selected. 
The  q2 is calculated as the correlation between the observed 
and predicted values and squaring the value (R package 
caret). The selected best performing ML algorithm was fur-
ther evaluated by estimating the root mean squared error 
(RMSE) and  R2 on the train and test set and by checking 
the percentage within the 2- and 3-fold error range. Fur-
thermore, the test set is also used to evaluate this model by 
checking the statistical characteristics advised by Golbraikh 
and Tropsha [23]. These characteristics were an  R2 above 
0.6, coefficients of determination below 0.1 and the slopes 
k of the regression line through the origin between 0.85 
and 1.15. An applicability domain analysis was performed 
by calculating the Mahalanobis distance with a probabil-
ity value of 0.95 of test data on the mean of the train data. 
To evaluate if the final model performance is better than 
chance, Y-randomization was performed. The target variable 
 logKp,uu,BBB was randomly permuted. The dataset preproc-
essing, model building and evaluation (only on the selected 
algorithm) was repeated with the permuted dataset for 30 
iterations. On the outliers additional physico-chemical prop-
erties analysis, check on their distribution in the chemical 
space within the PCA analysis were performed. The predic-
tive descriptors within the QSPR model were identified by 

estimating the importance of each descriptor individually 
and ranking them using the variable importance function in 
the R package caret and evaluated the relation with observed 
 logKp,uu,BBB values.

Integration into the LeiCNS‑PK3.0 Model

To demonstrate the application of QSPR models in the 
LeiCNS-PK3.0 CNS PBPK model, we generated predictions 
for CNS PK profiles for acetaminophen, methotrexate, pali-
peridone, phenytoin, raclopride and risperidone, as we had 
available in house measured microdialysis data and observed 
 Kp,uu,BBB values for these compounds. Plasma PK, physico-
chemical properties, and measured and predicted  Kp,uu,BBB 
values of these drugs were used as input parameters. Simu-
lations with LeiCNS-PK3.0 model were conducted with 
the observed  Kp,uu,BBB values, followed by simulations with 
predicted values while keeping the plasma PK and physico-
chemical parameters fixed. The predicted  brainECF profiles 
from both sets of simulations were overlaid with observed 
data points to evaluate the predictions on the basis of visual 
predictive checks.

Results

Preprocessing Data

Of the 375 included descriptor, 122 descriptors remained 
after near zero variance and co-correlated descriptors 
removal. On the remaining descriptors the Boruta feature 
selection was applied and resulted in 10 confirmed descrip-
tors and 4 tentative and the remaining rejected. These 14 
descriptors including 2D and 3D are further used for model 
building. Short descriptions of the included descriptors may 
be found in Supplementary Table 1.

Collected Data on  Kp,uu,BBB

A total of 98 microdialysis-measured  Kp,uu,BBB values 
were included for drugs with various physico-chemical 
properties (Supplementary Table 2–3). A Tanimoto simi-
larity analysis, based on the topological fingerprints of 
the training set molecules, identified the 12 compounds 
in the train set as having high similarity (> 0.7) to com-
pounds in the test set. To ensure independence of the 
test set, these 12 compounds were excluded from further 
model development. The chemical space of train and test 
set were compared by a PCA analysis within the first 
two principal components (PC) accounting for total 52% 
of the variance (PC1 = 35% and PC2 = 17%). Further 
analysis on the loadings of the descriptors within the 
first 2 PCs showed that H-bond donor capacity at −0.2 
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(vsurf_HB1) had the highest positive and Oprea leadlike 
test (opr_leadlike) the highest negative loading in PC1. 
Same analysis for PC2 showed that the descriptor for sur-
face area of regions where the SMR values fall within a 
range of 0.11,0.26 (SMR_VSA1) had the highest positive 
load and number of nitrogen atoms (a_nN) the highest 
negative load. Appropriate overlap of the chemical space 
of train and test sets was observed (Fig. 2).

QSPR Models

We trained five machine learning models on the train data 
set, using tenfold cross validation and 200 repeats for opti-
mization of tuning parameters. The best performing model 
was selected based on the average cross-validated predictive 
performance,  q2. Based on the predictive performance on 
train and test, the  R2 and RMSE, the RF was selected as the 
best performing model with a  q2 of 0.60 and RMSE of 0.48 
(Table I). The worst predicting ML was the KNN with a  q2 
of 0.45 and RMSE of 0.58.

The Random Forest Model Performance Testing

The RF model performance was further evaluated by evalu-
ating the predictive performance on train and test set. The 
predictive performance,  R2 of test was 0.61 with an RMSE 
of 0.52 (Table II). For the train set the  R2 was 0.92 and the 
RMSE of 0.24. The Y-randomization validation (25 itera-
tions, five iterations were skipped, due to 0 descriptors being 
selected) showed an  R2 on the test set of 0.11 (SD 0.14) and 
on train set of 0.85 (SD 0.09). The predicted values were 
calculated and the percentage within the twofold and three-
fold errors were determined and of the test set 33.3% was 
within twofold and 61.1% within threefold errors. The train 
set predictions was for 79.4% within the twofold and 94.1% 
within the threefold errors. The observed versus predicted 
 logKp,uu,BBB values (Fig. 3) of the final model demonstrate 
that mainly values around predicted  logKp,uu,BBB of −1 were 
outside the threefold change error range. The Mahalanobis 
distance applicability domain analysis identified 16 outliers 
in the whole dataset.

Fig. 2  Principal Component Analysis (PCA) on the physico-chemical 
properties of the test and train set being used to train the machine 
learning algorithms. The results shows that the collected dataset with 
the partition coefficient,  Kp,uu,BBB, being divided in test and train set 
have overlapping chemical space. The annotated compounds were 
identified as outliers by using the Mahalanobis distance.

Table I  Overview of Predictive Performance of the Tested Machine Learning Algorithms on Train Set. The Results Shown are the Average Pre-
diction Performances for the Train Data (n = 68) of the 10-fold Cross Validation and 200 Repeats with the Hyperparameter Optimized Tuning 
Parameters

q2 = average cross validated prediction error,  R2 = prediction error, RMSE = root mean square error. SD = standard deviation

Machine Learning Model q2 (SD) RMSE Tuning parameter Tuning range (steps) R2

Random Forest (RF) 0.60 (0.26) 0.48 mtry = 2 1 – 14 (1) 0.61
Support Vector Machines (SVM) 0.60 (0.28) 0.15 C = 1 1 – 10 (1) 0.53
K-nearest neighbors (KNN) 0.45 (0.28) 0.58 k = 9 1 – 100 (1) 0.48
Sparse Partial Least Squares (SPLS) 0.56 (0.28) 0.56 eta = 0.95 K = 7 eta = 0.8 – 0.95 (0.01),K = 1 

– 10
0.27

Partial Least Squares (PLS) 0.60 (0.28) 0.49 ncomp = 1 1 – 10 (1) 0.26

Table II  Random Forest Train 
and Test Data Performances and 
 R2 on Y-randomization with 30 
Iterations

*five iterations were skipped, due to 0 descriptors being selected. SD = standard deviation

Random Forest R2 RMSE Within two-
fold error (%)

Within three-
fold error (%)

Y-randomized  R2 
mean (SD)*

Y-randomized 
 q2 mean (SD)*

Train (n = 68) 0.92 0.24 79.4 94.1 0.86 (0.07) 0.27 (0.06)
Test (n = 18) 0.61 0.52 33.3 61.1 0.08 (0.08)
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The top three most important chemical characteristics 
(Fig. 4) in the final RF models included the VolSurf Criti-
cal packing parameter (vsurf_CP), number of nitrogen 
atoms (a_nN) and relative negative partial charge (RPC-). 
Individual analysis of the descriptors and  logKp,uu,BBB val-
ues showed for RPC- an overall weak positive association 
and for the other two no correlation was observed.

Integration into the LeiCNS‑PK3.0 Model

To demonstrate the integration of the QSPR model into the 
LeiCNS-PK3.0 model, acetaminophen, methotrexate, pali-
peridone, phenytoin, raclopride and risperidone were used 
for predicting the distribution in the rat  brainECF (Fig. 5). Of 
these drugs acetaminophen and raclopride were in the test 
set while the other four were in the train set. The simulations 
were conducted with observed and QSPR model predicted 

Fig. 3  Observed versus pre-
dicted  logKp,uu,BBB values with 
Random Forest model for train 
and test data. The prediction 
error  (R2) of both datasets is 
given in the left top corner. 
The solid line is the regression 
line, the dashed line is 2-fold 
error indication and dotted line 
is 3-fold error indication. The 
compounds with labels are 
the outliers identified with the 
Mahalanobis distance.

Fig. 4  Ranked chemical descriptors (top 5) for the final Random Forest model in decreasing order. The most important descriptors of the ran-
dom forest model for prediction of the partition coefficient,  Kp,uu,BBB, ordered from highest to lowest importance value (%). Bars are colored 
according to their association with  Kp,uu,BBB: blue bars indicate a positive association (higher descriptor value correspond to higher  Kp,uu,BBB 
value) and red bars indicate a negative association (higher descriptor value correspond to lower  Kp,uu,BBB value). vsurf_CP = VolSurf Criti-
cal packing parameter, a_nN = number of nitrogen atoms, RPC- = relative negative partial charge, vsurf_HL2 = Second hydrophilic-lipo-
philic balance descriptor, h_pstates = entropic state count at pH 7, vsa_acid = approximation of Van der Waals surface area of acidic regions 
in the molecule,vsurf_HB1 = hydrogen bond donor capacity, Q_VSA_FPNEG = fractional negative polar van der Waals surface area, PEOE_
VSA + 6 = sum of van der Waals surface areas of atoms within a partial charge, SlogP_VSA1 = surface area descriptor associated with Log of the 
octanol/water partition coefficient, PEOE_RPC +  = relative positive partial charge, opr_leadlike = the Oprea Lead-like test, SMR_VSA1 = sum 
of van der Waals surface areas for atoms within a range for molar refractivity, lip_don = the count of hydrogen bond donors.
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 Kp,uu,BBB values and the LeiCNS-PK3.0 predicted concen-
tration profiles were evaluated against in house measured 
microdialysis observations. LeiCNS-PK3.0 simulations 
using the QSPR predicted  Kp,uu,BBB that for most of the 
drugs, except raclopride, the predictions were overlapping 
for with the rat microdialysis observations.

Discussion

In this study we successfully developed a QSPR model 
using a random forest regression model. This model was 
able to predict for more than 61% of  Kp,uu,BBB values within 
a threefold error, using a unique large-scale dataset based on 
microdialysis measurements. In addition, we demonstrated 
how the developed QSPR model could be integrated into a 
CNS PBPK modeling workflow for prediction of CNS drug 
disposition.

The developed QSPR model showed a predictive per-
formance with an  R2 of 0.61 for the test set. This perfor-
mance is in line with previously developed QSPR models 
 (R2 = 0.53 – 0.89) [9–16]. The predictive performance of 
our model on the cross-validated training was associated 
with a  q2 of 0.60 and an  R2 value 0.61. Y-randomization 

analysis showed a low  R2 of 0.11 indicating limited overfit-
ting. Furthermore, performance of our model was superior 
in comparison to a previously published QSPR model devel-
oped with a smaller dataset (n = 53) and lower predictive 
performance (test  R2 = 0.35) [16]. The Mahalanobis distance 
identified 5 outliers within the test set and visually com-
paring these outliers in the PCA with the train set outliers 
showed overlap. Moreover, the identified outliers within the 
test set appear to have a predicted  logKp,uu,BBB around −1, 
except for memantine. The other compounds in the test set 
were generally close to the regression line. These finding 
suggest that the QSPR model developed could be applicable 
to the compounds chemically close to the ones within the 
applicability domain and makes this QSPR model suitable 
for further applications as part of PBPK workflows.

In this study, we utilized  Kp,uu,BBB values obtained exclu-
sively through microdialysis for constructing the QSPR 
model. In contrast, most existing QSPR models use  Kp,uu,brain 
values that use fraction unbound in brain by brain homoge-
nate assays, and fraction unbound in plasma protein by in 
vitro equilibrium dialysis methods. These approaches do 
not take into account the intact physiological context of 
the processes that govern CNS drug distribution. Microdi-
alysis based  Kp,uu,BBB values are most relevant, as these are 

Fig. 5  Predicted concentration–time profiles of six drugs at the rat brain extracellular fluid  (brainECF). Simulations were performed with the 
observed and predicted  Kp,uu,BBB value for acetaminophen, methotrexate, paliperidone, phenytoin, raclopride and risperidone. Acetaminophen 
and raclopride were in the test set and the other four in the train set. The simulations were completed using the central nervous system physi-
ologically based pharmacokinetic, LeiCNS-PK3.0, model. The drug profiles were compared to inhouse microdialysis measured rat studies (black 
dots).
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obtained in vivo, in the full physiological context. Therefore 
we consider the microdialysis derived  Kp,uu,BBB values as the 
best reflecting the real situation and used selectively these 
in our QSPR model development. Only one previous study 
has built a QSPR model based on microdialysis data, but 
it tested on a relative small number of 53 compounds [16]. 
Our study, however, developed a QSPR model by testing a 
larger number of compounds, resulting in a broader chemical 
space and higher predictive performance without the need to 
incorporate additional information on BBB transporters. The 
enhanced predictive performance suggests the usability of 
the developed QSPR model in clinically relevant predictions.

A previous study on comparing the predictive perfor-
mance in building QSPR models using 2D and 3D descrip-
tors suggested that using both will increase the predictive 
accuracy and in predicting the clinical success [24, 25]. The 
inclusion of large amount of 2D or 3D descriptors gave us 
the possibility to train the machine learning algorithms on 
various properties of the compounds and learn more about 
the potential relevant chemical features. In this study a 
number of important descriptors were identified which can 
impact the  Kp,uu,BBB of a drug and thereby transport across 
the BBB. Comparing the important descriptors obtained 
with the QSPR model in this study and others showed some 
overlapping descriptors. In this study descriptors as the ioni-
zation potential, charge, energy, number of nitrogen atoms, 
hydrogen bonding and hydrophilicity of the compounds 
were identified as important. This was partially in line with 
previous studies who identified hydrogen bonding, molecu-
lar topology, polar surface area and molecular volume as 
important descriptors for  Kp,uu,BBB prediction. Overlapping 
parameters such as the polar surface area and hydrogen 
bonding have been suggested to correlate with P-gp interac-
tion, and the charge, due to the negative charge of the BBB, 
may to rely on other active transport mechanisms [26–28]. 
Another descriptor from our study, the number of nitrogen 
atoms, have been studied before and the results of that study 
showed that various nitrogenous substructures can facili-
tate BBB penetration on different levels [29]. The ionization 
potential identified so far only in our study is a measure for 
the energy required to remove an electron from the molecule 
to become charged. The higher the ionization potential, the 
more energy is needed for the molecule to become charged, 
less polar and more lipophilic, which could be beneficial 
for passive transport and avoiding active transport as efflux 
transport. Our study confirmed the importance of the already 
identified descriptors and in addition showed the importance 
of other descriptors.

The currently developed QSPR model could be useful 
aid for design and development of early stages in CNS 
active drug with intended or not intended CNS effects, and 
CNS toxicity. Its application in predicting the  Kp,uu,BBB 
value for the LeiCNS-PK3.0 model accelerates and 

broadens the model’s use, reducing the need for animal 
testing and predicting PK profiles in various physiological 
compartments, including drug target sites. We show for 
the six drugs included in our simulations, the predicted 
 brainECF PK profiles are mostly in line with the microdi-
alysis measured concentrations. The combination of QSPR 
and CNS PBPK modeling further opens up the possibil-
ity to investigate what physico-chemical properties would 
results in good PK profiles for optimal target engagement, 
as well as predictions of drug distribution in other species, 
healthy and disease conditions or any other physiological 
changed conditions [30, 31].

We expect further refinements and improvements of 
QSPR model predictions may be achieved by adding drug-
transporter interaction information. Previous studies add-
ing transport information as P-glycoprotein efflux ratios 
in a mice QSPR model and adding influx and efflux trans-
porter information in a SPLS algorithm model showed 
improvement in the model performance [8, 14, 16]. In 
addition, some of the compounds can undergo metabolism 
at the BBB for these additional interaction with metabolic 
enzymes can be added. With additional interactions the 
current QSPR model could be improved and better predic-
tions can be achieved.

In conclusion, in this study we developed an QSPR 
model with acceptable predictive performance in predic-
tion of  Kp,uu,BBB values. Beside using this model for pre-
diction of the extent of drug distribution, the predicted 
 Kp,uu,BBB value can be used as input into the LeiCNS-
PK3.0 model to predict the unbound CNS drug distribu-
tion in various physiological conditions.
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