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A B S T R A C T

Despite drug-target residence time (RT) is a key topic in binding kinetics, little information exists on its theoretical 
quantification. The two most frequent mathematical expressions found in the literature correspond to two 
particular and simple pharmacological cases: the binary ligand-receptor complex and the induction-fit model. In 
this article, we propose a mathematical formalism to obtain an expression of RT that can be of general appli-
cability. RT is calculated from the system of ordinary differential equations (ODE) obtained by applying the Law 
of Mass Action to the selected chemical process. Then, a subsystem is constructed by defining which chemical 
species are of interest and omitting their global formation processes. RT maintains its accepted definition of 1/ 
koff, where koff is here defined as the absolute value of the smallest-modulus eigenvalue of the subsystem. The 
proposed procedure is successfully used to derive RT for a wide variety of pharmacological cases. In particular, 
the theoretical expressions of RT obtained for binary ligand-receptor binding and induction-fit coincide with 
those previously found in the literature. An extension of the RT pharmacological framework is proposed by 
including the concept of relaxation time (RXT), which involves pharmacological conditions associated with re-
ceptor activation rather than receptor binding. To conclude, the herein presented formalism for RT and RXT 
provides a mathematical framework that can be of general applicability in many pharmacological systems. It is 
expected that the procedure may be helpful in different pharmacological areas such as binding kinetics, PK/PD 
and enzymology.

1. Introduction

Residence time (RT) refers to the time span that a molecule or par-
ticle remains within a specific environment or system before exiting or 
undergoing/eliciting a transformation. In the context of binding ki-
netics, RT measures the duration or lifetime of the ligand-receptor 
complexed species and then it corresponds to the concept of drug- 
target residence time [1]. It is a critical parameter that influences the 
efficacy and duration of molecular interactions. Consequently, it in-
fluences the effectiveness of the drug’s action, so that a longer residence 
time typically corresponds to greater therapeutic effectiveness.

The simplest case of ligand-receptor binding [2] is the formation/ 

dissociation of a binary ligand-receptor complex (LR) involving a ligand 
L and a receptor R as represented in the following: 

L+R
k1
⇄
k− 1

LR (1) 

Here, k1 and k-1 are the rate constants of LR formation and LR dissoci-
ation, respectively, that is, the single microscopic rate constants directly 
involved in the ligand-receptor binding and unbinding processes. The 
Law of Mass Action establishes that the variation of LR concentration 
over time depends on the rates of LR formation (rf) and LR dissociation 
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(rd) according to the following differential equation: 

d[LR]
dt

= rf − rd = k1[L][R] − k− 1[LR]. (2) 

At equilibrium, association and dissociation rates are equal, that is, 
d[LR]/dt = 0, which leads to: 

k1[L]eq[R]eq = k− 1[LR]eq, (3) 

and the ratio between k-1 and k1 defines the equilibrium dissociation 
constant: 

Kd :=
k− 1

k1
=

[L]eq[R]eq
[LR]eq

. (4) 

Macroscopic dissociation and association rate constants are usually 
named koff and kon, respectively. For Eq. (1), koff = k-1 and kon = k1. For 
situations more convoluted than that represented by the binary ligand- 
receptor complex, koff and kon result in mathematical expressions that 
include a combination of microscopic rate constants.

RT is mathematically defined as the reciprocal of koff and is denoted 
by τ [1]: 

τ =
1

koff
, (5) 

which measures the affinity of the ligand for the receptor once it is 
occupied.

It is considered that RT is especially indicated as an efficacy measure 
for in vivo situations, which correspond to open systems in which the 
species involved are not in equilibrium [1]. However, the relationship 
between RT and efficacy is not limited to in vivo situations and can be 
found in all those situations in which a minimum time interval of ligand- 
receptor occupancy is necessary for signal transmission, for instance, for 
the binding of a transducer protein to the ligand-receptor complex [3]. 
To explicitly distinguish between receptor species unable or able of 
signal transmission, it is typical in receptor theory to include two ligand- 
receptor species: the inactive (LR) and the active one (LR*), that are 
exchanged reversibly: 

L+R
k1
⇄
k− 1

LR
k2
⇄
k− 2

LR* (6) 

In the case of G protein-coupled receptors (GPCRs), LR needs to undergo 
a conformational change to LR* to allow binding of the transducer G 
protein and to proceed through the signal transmission process. The 
probability of a G protein binding the ligand-receptor complex is 
dependent on the time interval of the receptor in the active LR* 
conformation. In this context, koff and τ become combinations of the 
microscopic rate constants included in the receptor system (6). Indeed, 
the chemical process (6) appears frequently in the literature with its 
corresponding koff and τ expressions [1]: 

koff =
k− 1k− 2

k− 1 + k− 2 + k2
, τ =

k− 1 + k− 2 + k2

k− 1k− 2
. (7) 

It is worth noting that the expressions in (7) include all the rate constants 
in Eq. (6) except for k1, the association rate constant between the ligand 
and the receptor.

The expressions in Eq. (7) have been obtained from different per-
spectives in the literature. In the appendix of this article, we examine 
two representative approaches developed by Kenneth Johnson 
(Appendix A) and Athel Cornish-Bowden (Appendix B), respectively 
[4,5]. In the first approach, a procedure to obtain koff for chemical 
systems compatible with Eq. (6) is presented; more precisely, a 
ligand–protein complex formation followed by a conformational change 
of the complex. In the latter approach, although koff was not calculated, 

the author provides a complete analytical solution of the time evolution 
of the concentrations of chemical species in a model of a sequence of two 
generic chemical reactions.

We would like to point out, on the one hand, that none of the above 
approaches explicitly mentions the term residence time and, on the other 
hand, that the chemical mechanisms involved in them are both equiv-
alent to Eq. (6), although Johnson’s approach is presented in the context 
of enzymatic reactions and Cornish-Bowden’s in a more general context. 
This double example shows the ubiquity of reaction schemes across 
biochemical paradigms, but also a disparity in the methodology. 
Moreover, it is also true that for biological systems more complex than 
Eq. (6), it is not straightforward to find a general procedure to define 
koff.

In the search for other approaches in the literature related to the 
concept of residence time in a pharmacokinetic context, we can mention 
the concept of mean residence time (MRT) [6,7]. Mathematically 
speaking, MRT is defined as the time that a drug is expected to last in a 
compartment. More precisely, if we define the probability density 
function 

ϕ(t) =
∑n

i=1kixi(t)∫∞
0
∑n

i=1kixi(t)dt
, (8) 

where xi(t) is the analytical expression for drug concentration in the i-th 
compartment and ki is the corresponding rate of elimination from the 
compartment; MRT is defined as the mean value of the distribution (8): 

MRT =

∫ ∞

0
tϕ(t)dt. (9) 

This concept can be also applied to binding kinetics if we focus on 
chemical species (e.g. receptor species) instead of compartments. Note, 
however, that this procedure to obtain MRT in terms of the parameters ki 
implies having an analytical (exact) solution of the system, and then, 
solving some integrals. This is a limitation to extend this idea to a 
general framework since there are no methods that allow to compute 
analytical solutions for nonlinear systems, leaving aside the difficulties 
of evaluating the integrals involved in (8).

From the above paragraphs, we have shown that various approaches 
addressing the concept of RT have been proposed in the literature, 
although there is no apparent connection among them: while expression 
(7) is a detailed description of RT for a specific system, expression (9)
provides a general procedure but difficult to compute. On the other 
hand, expression (7) is often used in the literature without including a 
proof. It would therefore be desirable to have a rigorous and easy-to- 
implement general procedure to compute RT. In this paper, we pro-
vide a mathematical framework for defining and quantifying RT that can 
be applied to a general class of biochemical interactions while mini-
mizing computational requirements. In particular, we show its agree-
ment with the RT definitions reviewed in this introduction [1,5,6,7]. 
Furthermore, we revisit how Eq. (7) and others derived from it were 
obtained in the literature and, afterwards, take them as a reference to 
capture the mathematical essence of these parameters and propose a 
comprehensive definition.

The paper is organized as follows. In the Methods section, we present 
the necessary mathematical concepts and terminology (namely, linear-
ization around equilibria, dominant eigenvalues and slow manifolds) 
and we propose the general procedure to compute the residence time. In 
the Results section, we successfully apply it to compute the drug-target 
residence time for a selection of pharmacological models, including the 
binary ligand-receptor complex, the conformational induction model, 
the two-state receptor model with no interconvertible states, several 
protein oligomerization models, the allosteric ternary complex and 
rebinding; we end the results by computing the residence time for other 
situations beyond drug-target residence time such as the lifetime of 
active complexes or relaxation times; the mathematical technicalities of 
the Results section are provided in Appendix D. In the Discussion 
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section, we compare the proposed method with the above-mentioned 
approaches (developed in the appendices A, B and C) and we also 
relate koff to both the catalytic constant kcat used in enzymology and the 
concept of half-life.

2. Materials and methods

We propose a general procedure for the quantification of RT based on 
the computation of a relevant parameter associated to the linearization 
of the system around an equilibrium point. We will see that this 
parameter is well-defined under generic conditions.

2.1. Definition of residence time

We will assume to have a mathematical model of the biochemical 
reaction consisting of an ordinary differential equation (ODE) system 
derived from the Law of Mass Action, which states that the variation 
over time of the concentration of a compound is proportional to the 
concentration of the reactants involved in the process through the 
microscopic rate constants. Let us denote the system as 

dx
dt

= X(x). (10) 

In general, we assume to have n species, so that x = (x1, …, xn) and the 
variable x is the vector of the concentrations of all chemical species. For 
the case of ligand binding followed by receptor activation, see Eq. (6), 
the system is written as 
⎧
⎪⎪⎨

⎪⎪⎩

dx1

dt
= − (k− 1 + k2)x1 + k− 2x2 + k1

(
[L]tot − x1 − x2

)(
[R]tot − x1 − x2

)
,

dx2

dt
= k2x1 − k− 2x2,

(11) 

where x1 and x2 represent [LR] and [LR*], respectively. The concen-
trations of the free receptor and the free ligand have been substituted, 
respectively, by [R] = [R]tot − x1 − x2 and [L] = [L]tot − x1 − x2, where 
[R]tot and [L]tot are the total concentrations of the two species. In the 
notation of Eq. (10), x = (x1, x2) and the vector field X has two com-
ponents, corresponding to the two right-hand sides of the equations in 
system (11).

Note that system (10) can have different equilibria, that is, values xeq 
of the concentrations such that X(xeq) = 0. In biological processes, the 
observable equilibria are the attractors, see [8] for a definition, that is, 
the equilibrium points xeq such that there exists an open neighbourhood 
U for which all trajectories with initial conditions in U tend to xeq as time 
goes to infinity. In the context of models derived from the Law of Mass 
Action it is often the case that there is a single attractor. For the sake of 
simplicity, then, we will focus on systems with a unique attractor, but all 
the methodology could be applied in the presence of multiple attractors.

It is known from the theory of dynamical systems − more precisely, 
the Hartman-Grobman Theorem, see [9,10]− that in generic situations 
the system can be linearized around an attractor. This means that, near 
xeq, the solutions of system (10) are homeomorphic (i.e. have the same 
qualitative properties) to the solutions of a linear system 

dx
dt

= Ax, (12) 

where A is an n x n real matrix. In fact, A is the so-called Jacobian matrix 
of X evaluated at xeq. The eigenvalues of A play a fundamental role here 
(a value λ such that A v= λv for a particular vector v is called an 
eigenvalue of A, while the vector v is known as an eigenvector associated 
to the eigenvalue λ). The eigenvalues can also be defined as the roots of 
the characteristic polynomial associated to the matrix A, see [8].

From basic linear algebra, if xeq is an attractor, the generic situation 
is that A has all eigenvalues with negative real part and that the solutions 

of system (12) can be written as 

x(t) = c1v1eλ1 t +⋯+ cnvneλnt , (13) 

where the vi are the eigenvectors of the system, λi are their corre-
sponding eigenvalues, and ci are constants depending on the initial 
conditions. Note that, in principle, all factors can be either real or 
complex numbers. Let us assume, without loss of generality, that Re(λn) 
≤ Re(λn-1) ≤ … ≤ Re(λ2) ≤ Re(λ1) < 0, where Re(λ) stands for the real 
part of λ. Following this notation, another generic situation is that one of 
the two following conditions happens:

(H1) λ1 is real and Re(λn) ≤ Re(λn-1) ≤ … ≤ Re(λ2) < λ1 < 0.
(H2) λ1 and λ2 form a pair of complex conjugate numbers, that is λ1,2 

= α ± βi, with i2 = -1, and Re(λn) ≤ Re(λn-1) ≤ … ≤ Re(λ3) < α < 0.
The case (H1) corresponds to an overdamped oscillation whereas the 

case (H2) to a damped oscillation, see Fig. 1.
Under these conditions, we define koff without ambiguity as 

koff = |Re(λ1)|. (14) 

Consequently, from (5), we have that the residence time is defined as 

τ =
1

|Re(λ1)|
. (15) 

Since the most common situation in binding kinetics is (H1) and our 
results can be easily extended to the case (H2), in order to ease the 
exposition, we will assume that (H1) holds. In this case, 

koff = |λ1|and τ =
1
|λ1|

. (16) 

We will refer to λ1 as the smallest-modulus eigenvalue. Fig. 2 shows a two- 
dimensional representation of the generic situation we are considering. 
The blue line represents the line whose direction vector is v1. In the 
terminology of dynamical systems, this line is called the slow manifold of 
the linearized system (12); moreover, the Hartman-Grobman Theorem 
states that all solutions (x1(t), …, xn(t)) of system (10) that tend to xeq 
(black trajectories in Fig. 2) will do so tangentially to the blue line. This 
fact is crucial for our purposes: it claims that the characteristic time of all 
orbits will be governed by the term eλ1t , see Eq. (13).

For readers less familiar with the concepts of eigenvalues and ei-
genvectors, we explain that in the context of this article (hypothesis H1), 
the existence of an eigenvector whose eigenvalue is at least one order of 
magnitude smaller in modulus than the others implies the presence of a 
preferred direction of approach to the equilibrium point in the multi-
dimensional space where the system’s dynamics evolve —specifically, 
the space of species concentrations. Practically, this means that the time 
required to reach equilibrium, which is directly related to the residence 
time, is primarily determined by a single direction. In essence, this 
represents a form of dimensionality reduction, governed by principles 
similar to those of principal component analysis [11]. This reduction 
allows us to characterize the temporal dynamics near equilibrium with a 
single parameter, koff.

This interpretation agrees with the remark made by Johnson [5] that 
any reaction in a sequence of reactions that is much faster than the one 
included in the preceding step will not be observed as a distinct reaction 
but will occur at the rate of the preceding step. Every step in a sequence 
of reactions will provide an exponential term to the general solution, but 
it will decay rapidly because of its fast rate. The absolute value of an 
eigenvalue describes how fast the step rate is: the higher the absolute 
value, the faster the rate is, and therefore, the faster it decays and the 
more imperceptible it becomes.

This idea is also supported by more recent literature [12,13], where 
the exponential with smallest-modulus eigenvalue (i.e. the slowest 
component of the system) is said to be the one that generates kobs and koff 
from experimental measurements. To illustrate this assessment, in Fig. 3
we show several solutions of system (11) which are, indeed, linear 
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combinations of two exponentials, as expressed in Eq. (13). In each 
panel, a value of KR = k-2/k2 is fixed (KR = 0.02 in panel A and KR = 0.2 
in panel B), and three solutions corresponding to three values of k2 are 
displayed. For reasons explained in Section 2.2, we consider k1 = 0. 
Notice that, although being constructed as a combination of 

exponentials, every curve in Fig. 3 could be analyzed as a single 
decaying exponential.

2.2. Subsystem of interest and effective computation of koff

In any chemical process it may happen that only a part of it (the 
subsystem of interest) determines the RT. Thus, we need to define which 
chemical species are of interest, and then omit their global formation 
processes. For instance, in the example of system (11), corresponding to 
chemical process (6), since we want to obtain the residence time of 
ligand L in receptor R, the chemical species of interest are LR and LR*, 
with x1 and x2 being the corresponding concentrations. In the proposed 
procedure, only the equations of the chemical species of interest are 
considered, and the rest are discarded. Because system (11) consists only 
of the two ODEs corresponding to these variables, it is not necessary to 
discard any equation. However, there are processes that do not influence 
the RT, like the association processes of the ligand: because RT measures 
the duration of the ligand-receptor complexed species, the ligand asso-
ciation process, governed by k1, should be neglected. This decision 
would not apply to forward and backward rate constants k2 and k-2 
because they involve a conformational change once the LR complex is 
formed. Paraphrasing to [1] by using the human analogy of RT as that of 
one’s residence time at a hotel, the charges for a hotel stay are not 
influenced by how long it takes one to arrive at the hotel (k1), but the 
period of time between check in (analogous to the bound state) and 
check out (analogous to dissociation). Also, because the guest may 
change the room during their stay and this may have an extra cost, k2 
and k-2 need to be included. The translation of these ideas into a 
mathematical expression would be setting k1 = 0. Moreover, we can see 
that the effect of this condition is equivalent to making [L] = [L]tot – x1 – 
x2 = 0 in system (11). The latter condition can be envisaged as a fast 
ligand elimination process in an experimental situation. In consequence, 
either by making k1 = 0 or [L] = 0, the ligand association process is 
obviated and the last term in dx1/dt in system (11) disappears, leading 
to the following subsystem: 
⎧
⎪⎪⎨

⎪⎪⎩

dx1

dt
= − (k− 1 + k2)x1 + k− 2x2,

dx2

dt
= k2x1 − k− 2x2.

(17) 

In the new ODE system, both x1 and x2 concentrations will present a 

Fig. 1. Overdamped versus damped oscillations (generic example). Our study focuses on overdamped oscillations, but it can be easily extendable to damped 
oscillations.

Fig. 2. Schematic representation of the trajectories of a generic nonlinear 2D- 
system in a neighbourhood of an attractor point (equilibrium point) with two 
negative eigenvalues associated, say λ1 and λ2 such that λ2 < λ1 < 0. Axes 
represent the concentrations of two species. The blue line is the direction cor-
responding to the smallest-modulus eigenvalue (λ1), that is, the direction of v1, 
thus indicating the linear slow manifold associated to the equilibrium point. 
The red line is the direction corresponding to v2, the eigenvector of eigenvalue 
λ2; double arrow identifies it as the fast direction. Black curves represent orbits 
of the nonlinear system starting at four different initial conditions (marked with 
squared symbols). Note that these orbits tend to the equilibrium point (black 
dot) as time evolves and, importantly, tangent to the direction of v1.
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decay time different from that of the full system (11). RT is strongly 
related to this decay because, in absence of association processes, the 
driving force of the system is the global dissociation rate constant (koff).

The formalism included in this section is also a mathematical 
translation of typical experimental procedures. First, ligands and re-
ceptors are incubated until ligand-receptor complexes are at equilib-
rium. Then, there are two procedures which are equivalent to making k1 
= 0: 1) washout of the free ligand or 2) addition of a second ligand in a 
high concentration, resulting in a competition assay favoring the bind-
ing of the ligand in high excess [2,14,15,16,17], the high concentration 
of the second ligand prevents the dissociated first ligand from binding 
again. So, from the perspective of the ligand of interest (the first ligand), 
we only see the decay of the corresponding ligand-receptor complex [2].

We will explain next how to apply the procedure to find the smallest- 
modulus eigenvalue λ1 for two-dimensional systems having a generic 
expression 
⎧
⎪⎪⎨

⎪⎪⎩

dx1

dt
= F(x1, x2)

dx2

dt
= G(x1, x2)

(18) 

In fact, in this article, we will deal mainly with two-dimensional sub-
systems of interest, but the procedure is easily extended to higher- 
dimensional cases (e.g., where there are more than two species 
involved in determining the RT).

To obtain the eigenvalues of the system, one must compute the Ja-
cobian matrix 

J =

⎛

⎜
⎜
⎜
⎝

∂F
∂x1

∂F
∂x2

∂G
∂x1

∂G
∂x2

⎞

⎟
⎟
⎟
⎠
, (19) 

where ∂
∂x1 

and ∂
∂x2 

stand for the partial derivatives of the functions F and G 
with respect to the variables x1 and x2, respectively. Note that for a 
system with n variables (species) we get an n x n square matrix.

The eigenvalues are, by definition, the roots (zeros) of the so-called 
characteristic polynomial P(λ) = det(J − λId), where Id is the identity 
matrix. Therefore, they are obtained by solving 

det(J − λId) = 0 (20) 

For two-dimensional systems, P(λ) is a polynomial of degree two and its 
roots, λ1,2, can be written in terms of the trace (the sum of entries in the 
diagonal of J) and the determinant of the Jacobian matrix: 

λm =
tr(J) − ( − 1)m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr(J)2
− 4det(J)

√

2
,m ∈ {1,2}. (21) 

In Eq. (21), whenever tr(J)2 − 4det(J) > 0, we are under hypothesis 
(H1). If the expression tr(J)2 ––4 det(J) were negative, we would be 
under hypothesis (H2). The case tr(J)2 = 4det(J) is not included neither 
in (H1) nor in (H2) and it would require a deeper study. However, as it is 
aforesaid, (H1) is the most common situation in binding kinetics.

When the trace is negative (as it is the case with all the examples in 
Section 3), for two-dimensional systems, the formula for koff in terms of 
the trace and the determinant of J according to definition (14) is: 

koff =
− tr(J) −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr(J)2
− 4det(J)

√

2
. (22) 

Note that, for the purpose of this study, it is not necessary to compute the 
complete solution of the system, that is, x1(t) and x2(t), because the ei-
genvalues are sufficient to obtain the RT according to our proposal.

2.3. Curve fitting

To estimate the relevant parameters of the different exponential 
decays considered, a standard nonlinear least-squares curve fitting 
approach was used. Parameter fitting was primarily conducted using the 
curve_fit function from Python 3.11.10. By default, this function uses the 
Levenberg-Marquardt (lm) algorithm, which is well-suited for problems 
with a sufficient number of data points and assumes unconstrained 
optimization. However, in cases with fewer experimental points or when 
parameter bounds were necessary, the Dogbox algorithm was used 
instead, as it handles bound constraints more effectively (see Section 3.5
for details). To validate the robustness and consistency of the fitting 
procedure, results obtained from Python were compared to those 
generated using GraphPad Prism 10.4.1, a widely adopted software in 
pharmacological data analysis. Across all datasets, the estimated pa-
rameters from both methods showed good agreement.

Fig. 3. Representation of the ligand-receptor complex decay over time for the chemical Eq. in (6) when there is no association of the ligand (k1 = 0), see system (11). 
The analytical solution for each chemical species is a linear combination of exponential functions that have the eigenvalues of the system as the coefficients of their 
exponents, as in equation (13). The initial condition in all the provided examples is the equilibrium point of the same system when association is considered (k1 ∕= 0), 
with Ltot = 10-8 M and Rtot = 10-10 M. The values for the ligand binding process, k1 = 107 M− 1 s− 1 and k-1 = 0.1 s− 1, were taken from [3]. Two values for the 
dissociation equilibrium constant KR = k-2/k2 were chosen for the respective panels, A) KR = 0.02 and B) KR = 0.2. We selected in each case the test values of 0.5, 5 
and 50 s− 1 for k2, while k-2 can be obtained as k2KR.
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3. Results

A number of pharmacological cases have been selected to show the 
applicability of the procedure. First, to illustrate and validate the pro-
posed formalism, we start with the simplest case, the binary ligand- 
receptor complex, and continue with the conformational induction 
model, widely present in the literature. Then, we progressively increase 
mechanistic complexity.

3.1. The binary ligand-receptor complex

In the case of the binary ligand-receptor complex, see Eq. (1), there is 
no distinction between conformations or states of the receptor; there is 
only a single ligand-receptor species, LR, which, in our terminology, is 
the chemical species of interest. Therefore, if ligand association is 
omitted (k1 = 0 in Eq. (2)), the resulting differential equation is: 

d[LR]
dt

= − k− 1[LR]. (23) 

Note that Eq. (23) is the differential equation for a simple exponential 
decay. The only eigenvalue of this system is λ1 = -k-1, and koff = k-1 in 
accordance with definition (14). Moreover, the RT is the inverse of koff: τ 
= 1/k-1. As it is aforesaid, this is an obvious result that is included herein 
only to show the consistency of the proposal.

3.2. The conformational induction model

Eq. (6) shows the conformational induction model, also known as 
induced-fit model, in which a ligand L binds a receptor R to form the 
binary LR complex and then induces a conformational change in the 
receptor complex to generate LR*. LR is assumed to be an inactive state 
of the receptor while LR* is the active state, i.e. the state that must be 
formed to trigger signal transmission and pharmacological response.

Unlike the case in Section 3.1, there are now two chemical species of 
interest, LR and LR*, giving rise to the two-dimensional ODE system 
(17), the so-called system of interest, to define RT. Following the com-
putations developed in Appendix D.1, we obtain 

koff = |λ1| =
(k− 1 + k− 2 + k2) −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k− 1 + k− 2 + k2)
2
− 4k− 1k− 2

√

2
. (24) 

From Eq. (24), we get the RT (τ): 

τ =
1

koff
=

2

(k− 1 + k− 2 + k2) −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k− 1 + k− 2 + k2)
2
− 4k− 1k− 2

√ . (25) 

It is worth noting that the expression of koff in Eq. (7), which is typically 
found in the literature, is equal to –det(J)/tr(J), and this result can be 
obtained through a Taylor series approximation of Eq. (24) (see John-
son’s approach to koff in Section 4.1 and Appendix A).

3.3. The two-state receptor model with no interconvertible states

Guo et al. [16] extended the competition association assay mathe-
matical model [18] to a two-state receptor model where the states R1 
and R2 of a receptor are not interconvertible and a ligand L can bind to 
both of them. Schematically, we have: 

L + R1

k1
⇄
k− 1

LR1 L + R2

k2
⇄
k− 2

LR2 (26) 

Note that this system is mathematically equivalent to having two 
different receptors. It is worth stating that in the work of Guo et al. [16] 
the concept of eigenvalue is used to solve the system and study its sta-
bility. However, RT, although briefly mentioned in the introduction, was 

not calculated. Thus, our purpose is to apply our methodology to the 
model to obtain RT through both receptor complexes. Accordingly, we 
choose LR1 and LR2 as the chemical species of interest. Following our 
procedure, the association processes of the ligand are omitted, so that 
Eq. (26) simplifies to 

L + R1 ←
k− 1

LR1 L + R2 ←
k− 2

LR2 (27) 

and the subsystem of interest is 
⎧
⎪⎪⎨

⎪⎪⎩

d[LR1]

dt
= − k− 1[LR1],

d[LR2]

dt
= − k− 2[LR2].

(28) 

It can be seen that system (28) consists of two separate exponential 
decays, governed by k-1 and k-2. They are analogous to the case in Eq. 
(23). Hence, depending on which rate constant is smaller, RT will be 1/ 
k-1 or 1/k-2. In the article by Guo et al. [16], the values of the rate 
constants are conveniently provided. For example, for the ligand 3H- 
NECA, k-1 = 0.046 min− 1 and k-2 is 0.0076 min− 1. Because k-2 is the 
smallest value, we propose that RT for 3H-NECA is τ = 1/0.0076 min− 1 

= 131.58 min. For the ligand CPA, k-1 = 0.025 min− 1 and k-2 is 0.0095 
min− 1; in this case, τ = 1/0.0095 min− 1 = 105.26 min.

To illustrate the time course of the exponential decay in this system, 
we studied the decay of 3H-NECA – receptor complexes (Fig. 4). We were 
provided with data from 2 of the total 5 independent experiments per-
formed to obtain Fig. 2B from [16].

In Fig. 4, a clear distinction can be observed between the curves 
fitted using monophasic and biphasic decay models. When the differ-
ence between the two is minimal, the dominant term of the biphasic 
decay should closely resemble the monophasic decay (resulting in 
similar half-lives). However, this is clearly not the case here. Although 
monophasic fitting is commonly applied in this type of experiment, it 
would be inappropriate in this instance. The underlying mechanism (as 
described in Eq. (27) and Eq. (28) involves two distinct processes gov-
erned by the rate constants k− 1 and k− 2, which correspond to the ab-
solute values of the system’s eigenvalues. Each process provides an 
exponential term to the analytical solution, explaining why the biphasic 
model provides a better fit to the data points. The fitting results are 
summarized in Table 1. For the biphasic model, the estimated eigen-
values are 0.033 and 0.007, corresponding to k-1 and k− 2, respectively. 
These values differ slightly from those reported in the original publi-
cation, as only 2 of the 5 available experiments were used in our anal-
ysis. Since 0.007 is the slower rate constant, it defines the system’s 
dominant timescale, giving τ = 1/0.007 = 142.8 min. These findings are 
further discussed in Section 4.3.

3.4. Receptor oligomerization models

Protein oligomerization is an evolutionary mechanism for regulating 
protein function through protein–protein interactions. Homodimers and 
higher-order oligomers mediate and regulate gene expression, activity of 
enzymes, ion channels, receptors, and cell–cell adhesion processes [19]. 
A recent review, focused on the modulation of protein oligomerization 
based on its mechanism of action, including both in vitro and in vivo 
approaches, and several experimental techniques, showed that a sig-
nificant fraction of cellular proteins, in both prokaryotic and eukaryotic 
systems, have oligomeric properties [20]. Interestingly, and by using 
AlphaFold2 artificial intelligence tool to predict homo-oligomeric as-
semblies across four proteomes, it was found that approximately 45 % of 
an archaeal proteome and a bacterial proteome and 20 % of two 
eukaryotic proteomes form homomers [21]. Protein oligomerization is 
also present in GPCRs, for which, depending on the class/family, there 
exist obligate or transient homodimers. GPCR oligomerization has been 
extensively analyzed by mathematical modeling through equilibrium 
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constants (see [22] for review) or from a kinetic perspective [3,23,24]. 
However, despite its pharmacological relevance, the quantification of 
residence time has not yet been addressed. We will discuss this topic, 
considering the cases of homodimeric, homotetrameric and hetero-
dimeric receptors.

3.4.1. The homodimeric receptor model
The binding processes of a ligand to a homodimeric receptor [24,25] 

follow the scheme 

2L+RR
2k1
⇄
k− 1

L+ LRR
k2
⇄

2k− 2

LRRL (29) 

The factors multiplying k1 and k-2 have been included because, for 
the former rate constant, the singly-occupied receptor LRR can be 
formed by ligand binding to any of the two sites of the receptor while, for 
the latter, the doubly-occupied receptor LRRL can dissociate from any of 
the two sites. In this way, the rate constants in Eq. (29) are treated as 
microscopic rate constants (see [26]). To solve this case and following 
our formalism, two cases of interest can be considered: the RT of the 
occupied receptor (either doubly or singly-occupied) and the RT of the 
doubly-occupied receptor.

3.4.1.1. The doubly-occupied homodimer model. If the functional 
response is elicited only when the homodimeric receptor is fully 

occupied, then LRRL will be the only chemical species of interest. In this 
case, the decay of this receptor species (defined by the rate constant 2 k- 

2) will define the RT. The situation is analogous to the binding of a single 
ligand to a receptor, which has been described in Eq. (23). Thus, the 
corresponding ODE system is 

d[LRRL]
dt

= − 2k− 2[LRRL], (30) 

and the RT is τ = 1/(2 k-2).
Note that the formalism for receptor homodimerization, and higher- 

order oligomers, in general, can be directly translated to the case of ion 
channels with two or more binding sites, respectively [26].

3.4.1.2. The doubly and singly-occupied homodimer model. If our focus is 
on both the doubly and the singly-occupied homodimers, then the 
subsystem scheme becomes 

2L+RR←
k− 1

L+ LRR ←
2k− 2

LRRL (31) 

which leads to the system 
⎧
⎪⎪⎨

⎪⎪⎩

d[LRRL]
dt

= − 2k− 2[LRRL],

d[LRR]
dt

= 2k− 2[LRRL] − k− 1[LRR].
(32) 

Depending on which one is smaller, the RT of ligand L will be 1/(2 k-2) or 
1/k-1 (see Appendix D.2). Notice that this is a similar situation to the one 
described previously in Section 3.3.

3.4.2. The homotetrameric receptor model
GPCRs can oligomerize in higher-order arrangements than homo-

dimers. In particular, homotetramers can be formed (see, for example, 
references to the M2 muscarinic receptor in [27]). Of note, a mathe-
matical model for the interconversion between two homodimers and a 
tetramer was proposed and their relative stoichiometry and ligand 
binding analyzed in terms of equilibrium constants [28]. We take here 
the homotetramer system and replace equilibrium by rate constants to 
compute the RT. 

Fig. 4. Fitting of the experimental data from Fig. 2B of [16] either to a monophasic (y = 100e− λt) or biphasic (y = Ce− λ1 t + (100 − C)e− λ2 t) exponential decay. The 
half-lives of both the monophasic decay and the dominant term of the biphasic decay are shown to be compared. Fitting was performed by using the data of 2 out of 5 
total independent experiments.

Table 1 
Parameter values obtained from the fitting of the experimental data from Fig. 2B 
of [16] either to a monophasic (y = 100e− λt) or biphasic (y = Ce− λ1 t +

(100 − C)e− λ2 t) exponential decay. Fitting was performed by using the data of 2 
of the total 5 independent experiments. RT of 3H-NECA was computed for each 
form of decay.

Function Parameters RT (min) R2

Biphasic decay C = 62 ± 11 142.8 
(1/ λ1)

0.9934
λ1 = 0.007 ± 0.001 (min− 1)
λ2 = 0.033 ± 0.009 (min− 1)

Monophasic decay λ = 0.0117 ± 0.0006 (min− 1) 85.5 
(1/ λ)

0.97323
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4L+R4

4k1
⇄
k− 1

3L+ LR4

3k2
⇄

2k− 2

2L+ L2R4

2k3
⇄

3k− 3

L+ L3R4

k4
⇄

4k− 4

L4R4 (33) 

4L+R4 ←
k− 1

3L+ LR4 ←
2k− 2

2L+ L2R4 ←
3k− 3

L+ L3R4 ←
4k− 4

L4R4 (34) 

As it can be seen in Eq. (33), there are four ligand-receptor binding 
processes since there are four binding sites for a homotetramer. Eq. (34)
describes the system when all the association processes of the ligand are 
omitted. In the same way as in Eq. (29), the factors multiplying the rate 
constants were included to treat them as microscopic rate constants. As 
in the homodimer case, we can again consider different situations. 
Namely, if the only chemical species of interest is the fully-occupied 
homotetramer, L4R4, then its concentration will follow a simple expo-
nential decay ruled by − 4k-4 (in an analogous form to Eq. (30)) and RT 
would be 1/(4 k-4); but, if the chemical species of interest are all the 
ligand-bound homotetramers, whether fully or partially occupied, then 
the system is more complex (see the equations of the systems and the 
corresponding computations in Appendix D.3).

The RT of ligand L will be either 1/(4 k-4), or 1/(3 k-3), or 1/(2 k-2) or 
1/k-1, depending on which one is the smallest in absolute value. As 
shown in Appendix D.3, the results can be easily extended to homomers 

with n protomers, for which τ = maxm=1,⋯,n

{
1

mk− m

}

.

3.4.3. The heterodimeric receptor model
Receptors can oligomerize not only forming homo-oligomers but also 

hetero-oligomers [29]. A heterodimer receptor model in a binding ki-
netics context was recently proposed [3], see Fig. 5. The solution of the 
time-dependent concentrations of the chemical species was provided in 
[23]. Quantification of residence time will complement and reinforce 
the binding kinetics subject in the field.

Heterodimeric receptors can yield pharmacological responses that 
differ from those produced by their partners when acting as monomers 
[30,31]. Moreover, if we accept that a heterodimeric receptor provides 
the conceptual framework for drug combination therapy [23], then we 
will consider the receptor species of interest as that with both ligands 
bound, i.e. AR1R2B. Thus, residence time refers to the case of both li-
gands bound to the receptor. If, following our rationale, AR1R2B for-
mation processes are omitted (i.e., k3 and k4 are not considered), the 
scheme of the subsystem of interest is 

AR1R2 +B←
k− 3

AR1R2B→
k− 4

A+R1R2B (35) 

and the corresponding ODE subsystem is one-dimensional: 

d[AR1R2B]
dt

= − (k− 3 + k− 4)[AR1R2B]. (36) 

Therefore, there is a single eigenvalue, λ1 = − (k-3 + k-4), which leads to 
the following expressions for koff and RT (τ): 

koff = |λ1| = k− 3 + k− 4, τ =
1

koff
=

1
k− 3 + k− 4

. (37) 

3.5. The allosteric ternary complex model

Allosteric modulation seems to be a general property of living sys-
tems and can be considered as a unifying mechanism for receptor 
function and regulation [32]. Allosteric interactions between ligands 
can happen not only through protein–protein interactions in receptor 
oligomers but also through two binding sites (the orthosteric and the 
allosteric) in a single receptor protein. The simplest model for allosteric 
interactions in a single receptor is the allosteric ternary complex model 
depicted in Fig. 6 (see [33,34] for review). Ligand A is considered to 
bind to the orthosteric site, while ligand B binds the allosteric site acting 
as a positive (PAM), negative (NAM) or neutral allosteric modulator [3]. 
Although this situation is clearly different from the heterodimeric re-
ceptor from a pharmacological point of view, it is mathematically 
equivalent: two binding sites, four receptor species and eight rate con-
stants (four forward and four reverse) depicted on a formally analogous 
chemical scheme. Thus, the ODE systems obtained from both models are 
the same. However, because the heterodimeric receptor and the allo-
steric ternary receptor models are pharmacologically different systems, 
the chemical species of interest for the calculation of residence time are 
also different.

In the case of the heterodimeric receptor, we consider only the 
doubly-occupied receptor species to be of interest because of the phar-
macological context: two-drug combination therapies are the result of 
the combined effect of two drugs; then, we considered their joint binding 
to the receptor as that responsible of the selected effect. However, in the 
case of analyzing the allosteric modulation of an orthosteric ligand in a 
monomeric receptor, what is interesting to compare is the RT of ligand A 
alone with that of ligand A in presence of the allosteric modulator B. 
From the binding kinetics point of view, it would be expected that if B is 
a PAM, it would increase the RT of ligand A; while if B is a NAM, the 
opposite result would be found. Mathematically, a PAM would make k-4 
smaller than k-1 (see Fig. 6a), which means that the dissociation rate of 
ligand A is slower in presence of B. It can be also said that a PAM makes 
α- < 1, if cooperativity rate parameters are used (see Fig. 6b). These 
concepts can be better understood in the context of recent experimental 
work [35]. In the latter study, a ligand, named 368, was found that, by 
allosterically binding to the µ-opioid receptor (MOR), increased the af-
finity of the MOR antagonist naloxone by decreasing its dissociation 
rate. This was also consistent with experiments showing an increase in 
naloxone residence time in the presence of 368. The discovery of 368 is 

Fig. 5. Diagram of ligand binding to a preformed heterodimeric receptor. Ligand A binds to receptor R1 protomer and ligand B to R2. There are four chemical species 
of the receptor: the empty heterodimer R1R2, the singly-occupied heterodimers AR1R2 and R1R2B, and the doubly-occupied heterodimer AR1R2B. a) Rate constants 
numbered from 1 to 4: forward rate constants have positive subscripts, and the backward or reverse ones have negative subscripts. b) Introduction of cooperativity 
rate parameters α+, α-, β+ and β-: the rate constants with subscripts 3 and 4 (positive and negative) can be expressed in terms of the rate constants with subscripts 1 
and 2 (positive and negative) through the cooperativity rate parameters.
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of great relevance because naloxone is the most common and effective 
treatment for opioid overdoses and therefore critical to addressing the 
current opioid overdose epidemic driven by fentanyl and other highly 
potent MOR agonists [35]. It is worth noting that we have considered 
368 a PAM because it increased the affinity of an orthosteric ligand, 
while in the original article it was considered a NAM because, being 
naloxone an antagonist, 368 contributed to the stabilization of the 
inactive state of MOR and, consequently, to the blocking of agonist 
binding. The application of our rationale may help to mechanistically 
quantify the observed increase of naloxone (ligand A) residence time in 
the presence of 368 (ligand B).

The RT of ligand A in the absence of B is obtained straightforwardly 
as 1/k-1 (koff = k-1) (see Fig. 6), because it is analogous to the binary 
ligand-receptor complex described in Section 3.1. If ligand B is present, 
then the chemical species of interest to obtain the RT of ligand A are AR 
and ARB, that is, the receptor complexes containing A. The subsystem of 
interest is then 

R←
k− 1

AR
k3
⇄
k− 3

ARB→
k− 4

RB (38) 

In terms of the cooperativity rate parameters, Eq. (38) is written as 

R←
k− 1

AR
β+k2

⇄
β− k− 2

ARB →
α− k− 1

RB (39) 

The nonlinear ODE system corresponding to the Eq. (38) is studied in 
Appendix D.4.

For the RT of ligand A to be higher in the presence of B, the koff when 
A is alone must be higher than the koff obtained for the current model. In 
the Appendix D.4 it is proven that this fact implies that k-4 < k-1, which 
is equivalent to α- < 1. This condition was intuitively expected for PAMs 
according to Fig. 6, and we can also conclude from this mathematical 
proof that α- > 1 for NAMs. Moreover, these conclusions would apply to 
the heterodimeric receptor model due to its mathematical equivalence 
(see Fig. 5). If one were interested in the RT of ligand A in the hetero-
dimer in the presence of B, with AR1R2 and AR1R2B as chemical species 
of interest, then the expression of koff would be the same as (22), with 
exactly the same trace and determinant shown in (D15). This occurs 
because, although the allosteric ternary model and the heterodimeric 
receptor model are clearly different from a pharmacological point of 
view, they are mathematically equivalent, as both share the same ODE 
system.

A recent study [36] describes an allosteric model involving the M4 
muscarinic acetylcholine receptor (M4 mAChR). Using Eq. (38) as a 
reference, receptor R corresponds to M4 mAChR, ligand A is 3H-NMS (an 

orthosteric radioactive ligand) and ligand B is xanomeline, an allosteric 
modulator that can also bind to the orthosteric site. The study measured 
the dissociation rate constant (koff) of 3H-NMS under varying concen-
trations of xanomeline: 0, 10, 30, and 100 µM. These measurements 
were obtained via a competition binding assay, as outlined in Section 
2.2. When 3H-NMS − M4 mAChR complexes are at equilibrium, a second 
ligand (atropine in this case) is added at a high concentration resulting 
in a competition assay that favors atropine binding. An amount of 10 µM 
of atropine was the minimum necessary concentration to prevent the 
association of 3H-NMS. However, this assay was also performed by using 
xanomeline as an excess orthosteric ligand besides as an allosteric 
ligand. Note that, although xanomeline displays bimodal binding 
(orthosteric and allosteric), its orthosteric modality is obviated in this 
case because what is being measured is the RT of 3H-NMS, which is the 
only labeled ligand. Therefore, the role of xanomeline as an orthosteric 
ligand, under these circumstances, is just establishing the necessary 
excess to prevent rebinding of 3H-NMS. An amount of 10 µM of xano-
meline was also the minimum necessary concentration to prevent the 
association of 3H-NMS. The results indicate that, in the situations where 
a concentration of 10 µM of either atropine or xanomeline is used, a very 
similar koff is obtained, which corresponds to the koff of 3H-NMS when 
there is no allosteric modulation, k-1. As the concentration of xanome-
line increased, a decrease in koff was observed and, in consequence, the 
RT of 3H-NMS is extended in presence of higher xanomeline 
concentrations.

This effect is illustrated in Fig. 7, which compares two dissociation 
curves: (a) with 10 µM atropine and no xanomeline, and (b) with 100 µM 
xanomeline. In the latter case, xanomeline not only prevents 3H-NMS 
rebinding but also exerts a significant allosteric effect. In contrast, 
atropine at 10 µM serves solely to block rebinding without allosteric 
modulation, since it is an orthosteric ligand. Thus, the extended resi-
dence time seen in the presence of high xanomeline concentrations re-
flects its allosteric modulation of the 3H-NMS–receptor complex.

In both Fig. 7a and b, the experimental data (accessible online) [36] 
were fitted to both a monophasic and a biphasic decay, and it can be 
seen that the curves are coincident. In Fig. 7a, no xanomeline is present, 
so the k-1-governed decay of 3H-NMS is described. Therefore, from a 
mechanistic point of view, the correct choice is to use the monophasic 
decay formula, which gives the eigenvalue λ = 0.0058 min− 1 (see 
Table 2). This value is equal to k-1, which is the only rate constant 
involved in this process. If we look at the results of the fitting to a 
biphasic decay, one of the eigenvalues coincides with the one provided 
by the fit to a monophasic decay, and the other one has a different value, 
without error. The value of the constant C is 100, which implies the 
disappearance of the second exponential term in y = Ce− λ1 t +

(100 − C)e− λ2t ; that is, the fitting algorithm does not distinguish between 

Fig. 6. Diagram of ligand binding to a receptor with two binding sites: one orthosteric and one allosteric. Ligand A binds to the orthosteric binding site and ligand B 
to the allosteric one. There are four chemical species of the receptor: the empty receptor R, the singly-occupied receptors AR and RB, and the doubly-occupied 
receptor ARB. Notice the similarity with the diagram for a heterodimeric receptor in Fig. 5. a) Rate constants numbered from 1 to 4: forward rate constants 
have positive subscripts and the backward or reverse ones have negative subscripts. b) Introduction of cooperativity rate parameters α+, α-, β+ and β-: the rate 
constants with subscripts 3 and 4 (positive and negative) can be expressed in terms of the rate constants with subscripts 1 and 2 (positive and negative) through the 
cooperativity rate parameters.
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two distinct exponential components, instead identifying only a single 
dominant exponential term. Note that the second eigenvalue can take 
any arbitrary value (e.g., 0.01, 1, or 1000) since its contribution 
completely cancels out. The fitting was performed in Python using the 
Dogbox method. However, if GraphPad Prism is used instead, the values 
for λ1 and λ2 will be equal and the errors will be huge. This poor fit to the 
biphasic exponential decay is mechanistically expected in this case, 
since it actually describes a monophasic decay of the same type as in 
Section 3.1.

On the other hand, in the case of Fig. 7b something different hap-
pens. Mechanistically, it is expected to have two exponential terms (see 
Appendix D.4), but if we look at Table 2, we see that something similar 
to the previous case occurs: the value of the constant C is 100, which 
cancels the second exponential term. Therefore, one of the eigenvalues 
(specifically, the one with the highest absolute value) is not detectable. 
Although this seems inconvenient, it is an ideal example to illustrate 
what happens when an exponential term is clearly dominant. The 
exponential term that contains the smallest-modulus eigenvalue, that is, 
the one that provides the residence time, somehow masks the other 
exponential term. The second exponential term exists, but its contribu-
tion is so small that it is not detectable. In fact, it is so small that the 
biphasic decay is almost equal to monophasic. Therefore, the result from 
the monophasic decay can be used without making a significant error. 
However, it is important to bear in mind that, from a mechanistic point 
of view, there are two exponential terms: the dominant one and the 

masked one, and that in these ideal situations, the masked one will not 
be measurable and can be obviated in practice.

3.6. The rebinding case model

When a ligand dissociates from its receptor, the local concentration 
of the ligand near the receptor is higher than elsewhere. Because of this 
fact, it would be more likely for the ligand to bind to the receptor again 
rather than diffuse away or be eliminated. This phenomenon is called 
rebinding, and when it occurs in a repetitive cycle of rapid rebinding and 
slow dissociation, it is thought to extend the magnitude of intracellular 
RT [37]. Note the use of the term intracellular in reference to the RT.

Rebinding can be schematized in the following way: 

←
kel L+R

k1
⇄
k− 1

LR (40) 

where kel is the elimination or diffusion rate constant for the ligand L.
Note that (40) is built up from (1) by adding an elimination process. 

Although the definition of the RT is generally accepted as 1/k-1 for bi-
nary ligand-receptor binding processes, there are some proposals in the 
literature suggesting that kon (k1 in this particular example), the second 
order association rate constant, also has an important role in binding 
kinetics [38,39]. Rebinding processes depend on kon because this is the 
rate constant that describes the binding of the ligand. To quantify the RT 
in the context of rebinding we will adapt our methodology and kon will 
be properly included.

It seems to us that when discussing the role of kon in the RT, the 
system is approached differently to the more typical ways employed so 
far in this article: instead of referring to the RT as the time a ligand is 
expected to remain bound to a receptor, some new terms appear, such as 
“intracellular RT” or “pharmacokinetics” of the ligand, and usually some 
references to the elimination constant (kel) of the ligand. It seems that 
the focus is not on the receptor itself, but also on its environment, or 
even on the cell; therefore, the RT is now referred to as the time a ligand 
is expected to remain inside the cell, or in the receptor environment 
(bound or not) before diffusing.

For this reason, we want to illustrate the rebinding process following 
Eq. (40) and compare it with Eq. (1). It is clear that in Eq. (1), the ligand 
RT at the receptor is 1/k-1; but in Eq. (40), we can distinguish between 
the ligand RT at the receptor only and the ligand RT in the cell. For the 
first case, τ =1/k-1, as in Eq. (1), but if the intracellular RT is desired, 
then koff is not k-1, but a more complex expression including k1, k-1 and 
kel. Qualitatively, Eq. (40) is analogous to Eq. (6) when k1 = 0. In Eq. (6), 
the chemical species of interest are LR and LR* (the RT of the ligand- 

Fig. 7. Fitting of the experimental data from Fig. 3b of [36] either to a monophasic (y = 100e− λt) or biphasic (y = Ce− λ1 t + (100 − C)e− λ2 t) exponential decay. The 
decay of 3H-NMS − M4 mAChR WT complexes over time was considered under two situations: a) in the absence of an allosteric ligand, and b) in the presence of the 
allosteric ligand xanomeline, with a concentration of 0.1 mM.

Table 2 
Parameter values obtained from the fitting of the experimental data from Fig. 3b 
of [36] either to a monophasic (y = 100e− λt) or biphasic (y = Ce− λ1 t +

(100 − C)e− λ2 t) exponential decay. RT of 3H-NMS in M4 mAChR WT was 
computed for each case.

Situation Function Parameters RT 
(min)

R2

Absence of allosteric 
ligand

Biphasic decay C = 100 ± 4 172.4 
(1/ λ1)

0.9966
λ1 = 0.0058 ±
0.0004 (min− 1)
λ2 = 0.0683 ± 0.0 
(min− 1)

Monophasic 
decay

λ = 0.0058 ±
0.0002 (min− 1)

172.4 
(1/ λ)

0.9966

Presence of allosteric 
ligand xanomeline 
(0.1 mM)

Biphasic decay C = 100 ± 8 303 
(1/ λ1)

0.9698
λ1 = 0.0033 ±
0.0006 (min− 1)
λ2 = 0.0442 ± 0.0 
(min− 1)

Monophasic 
decay

λ = 0.0033 ±
0.0003 (min− 1)

303 
(1/ λ)

0.9698
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receptor complexes), but in this case, they are L and LR (the intracellular 
RT of the ligand, whether bound or not).

From this point, the methodology for obtaining eigenvalues is 
applied, see Appendix D.5. In this case, it is not necessary to omit any 
formation process because the model does not include an influx of ligand 
L, but only its elimination. It is worth noting that the resulting subsystem 
of interest is nonlinear in this case. In particular, the Plusquellec and 
Houin approach for finding the MRT explained in (9) cannot be applied 
because we cannot find an explicit general expression for the solution. In 
contrast, it is straightforward to find the smallest-modulus eigenvalue 
and apply our methodology, which is 

koff = |λ1| =
k1[Rtot ] + kel + k− 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k1[Rtot] + kel + k− 1 )
2
− 4kelk− 1

√

2
(41) 

This expression for the global dissociation/reverse rate constant in-
cludes both association (k1) and dissociation (k-1) rate constants of the 
ligand. This idea has already been mentioned in the literature [40], 
where an “effective reverse coefficient” is defined to better describe this 
scenario where both k1 and k-1 play a role, instead of using only k-1. This 
implies that for the case of rebinding, the focus is not put on the receptor 
itself, but also on its vicinity. So, here, the RT does not refer to the time 
the ligand spends bound to the receptor before dissociating, but to the 
time the ligand spends bound to the receptor or being on its surrounding 
environment before diffusing.

3.7. Extending the concept of drug-target residence time

The procedure presented in this article allows us to extend the 
concept of RT beyond the limits of ligand-receptor binding. In the 
context of drug-target RT, the chemical species of interest are all the 
ligand-target complexes, but we may be interested only in the lifetime of 
the active receptor species, that is, the lifetime of the receptor species 

yielding the observed functional response. In this case, we should also 
consider constitutive receptor activity. Moreover, ligand-receptor 
binding does not necessarily imply receptor activation, as in the case 
of antagonists. RT can therefore be redefined as the expected lifetime of 
the chemical species of interest, whether they are ligand-target com-
plexes or not.

The methodology introduced in the Methods section allows to define 
also a “residence time” for the above situation. We consider a two-state 
receptor system (Fig. 8) in which the receptor can be inactive (R) or 
active (R*). The ligand can bind preferentially to R* (agonist) or R (in-
verse agonist) or bind to R and R* without preference (neutral antago-
nist). This situation would correspond to conformational selection. 
Alternatively, the ligand can bind to R forming the LR complex and then 
induce the activation of the receptor in the complex (LR*), which would 
correspond to induction fit. Although there is a debate about the relative 
weight of these two trends in real situations [13,41], they probably 
happen simultaneously, the relative weight depending on the ligand- 
receptor pair and the cellular environment.

Our aim is to study different situations in terms of the model 
described in Fig. 8 and to distinguish between different residence times 
depending on which chemical species of interest are considered or not.

3.7.1. Residence time for ligand-receptor complexes
First, to determine the expression of the RT for ligand-receptor 

complexes, the diagram in Fig. 8 is simplified to 

L+R←
k− 2

LR
k4
⇄
k− 4

LR* →
k− 3

L+R* (42) 

The two chemical species of interest are LR and LR*, and the formation 
processes for these species (governed by k2 and k3) are omitted. From 
the computations in Appendix D.6, we get

3.7.2. Residence time of the active ligand-receptor complex
Another mechanistic condition within the scheme of Fig. 8 would be 

to consider that the only chemical species of interest is LR*, the only 
ligand-receptor complex yielding the functional response. After elimi-
nating its formation processes (governed by k3 and k4), the scheme is 
reduced to 

L + R* ←
k− 3

LR* →
k− 4

LR (44) 

whose corresponding ODE is 

d[LR*]

dt
= − (k− 3 + k− 4)[LR*]. (45) 

This case is analogous to the one described in Eq. (23), and therefore the 
RT of the ligand bound to the active receptor can be easily computed: koff 
is equal to the absolute value of the unique eigenvalue, that is, koff = k-3 
+ k-4, and the RT (τ) is equal to 1/(k-3 + k-4).

It has been proposed that for GPCRs, the residence time is positively 
correlated with agonist efficacy because the longer an agonist remains 
bound to the receptor, the more cycles of G protein activation it can 
catalyze [42]. Strictly speaking, from Eq. (44) it would be more 
appropriate to say that the residence time of an agonist in the ligand- 
receptor active state rather than the residence time in the full range of 

Fig. 8. Two-state receptor model including both conformational selection and 
induction-fit mechanisms. Induction-fit consists of receptor activation after 
ligand binding, while conformational selection assumes that the receptor can be 
active in the absence of the ligand. Therefore, there are four reversible reactions 
and four chemical species in this system: the inactive receptor (R), the active 
receptor (R*), the inactive ligand-receptor complex (LR) and the active ligand- 
receptor complex (LR*). Note that only seven of the eight rate constants are 
independent since the relationship k− 1k− 3

k1k3
= k− 2k− 4

k2k4 
holds.

koff =
k− 2 + k− 3 + k− 4 + k4 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k− 2 + k− 3 + k− 4 + k4)
2
− 4(k− 2k− 4 + k− 2k− 3 + k− 3k4)

√

2
. (43) 
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receptor conformations would be expected to be positively correlated 
with agonist efficacy.

3.7.3. Relaxation time of the active receptor species
Following the previous discussion, which focused on the residence 

time of the ligand in the ligand-receptor active state, and considering 
that the inclusion of R* in the two-state model of Fig. 8 implies consti-
tutive activity of the receptor, it makes sense to propose a kinetic sub-
scheme in which both active states of the receptor, R* and LR*, are the 
chemical species of interest: 

L+R←
k− 1

L+R*
k3
⇄
k− 3

LR* →
k− 4

LR (46) 

It is worth noting that the association rate constant k3 was included in 
Eq. (46) because, in the same way that LR and LR* were included in Eq. 
(42), we are treating R* and LR* as functionally equivalent. The corre-
sponding two-dimensional ODE system is 
⎧
⎪⎪⎨

⎪⎪⎩

d[R*]

dt
= − (k− 1 + k3[L] )[R*] + k− 3[LR*],

d[LR*]

dt
= k3[L][R*] − (k− 3 + k− 4)[LR*].

(47) 

The inclusion of R* in the residence time framework has conceptual and 
terminological consequences. Drug-target residence time involves the 
dissociation of a ligand from a receptor to which it was previously 
bound. However, the rate constant k-1 involves the deactivation of a 
receptor species with no ligand present. Because of this, we suggest 
using the term relaxation time (RXT) instead of residence time (RT) 
when considering the lifetime of receptor species that do not involve 
ligand dissociation. In this way, the RXT allows for an extension of the 
residence time concept to situations where the focus is more on ligand 
function than ligand binding and can be considered a hybrid between 
binding kinetics and receptor functionality. It is worth noting that RXT 
has a resemblance to Cornish-Bowden’s approach (see Appendix B). We 
will follow our formalism and use the symbol τ in the same way as 
before.

From the computations shown in Appendix D.7, we observe that two 
interesting limit conditions can be considered: [L] = 0 and [L] → +∞. In 
the first case, the absence of ligand can arise either from a situation of 
basal conditions or from a process of rapid ligand elimination after 
ligand-receptor dissociation. In system (47), when considering [L] =
0 under basal conditions, the RXT is equal to 1/k-1 because the only 
chemical species that remains is R*. On the contrary, if a fast elimination 
process is considered, the RXT (see Appendix D) is either 1/(k-3 + k-4) if 
k-1 > k-3 + k-4 or 1/k-1 if k-1 ≤ k-3 + k-4. Because k-1 is the rate constant 
for the decay of R* in system (47) and k-3 + k-4 is the global rate constant 
for the decay of LR*, then the biological interpretation of these results is 
the following: if k-1 ≤ k-3 + k-4, the decay of R* is dominant (its eigen-
value is the smallest in modulus), while if k-1 > k-3 + k-4, then the decay 
of LR* is the dominant one.

On the contrary, at saturating ligand concentrations ([L] increasing 
indefinitely), the RXT is (see again Appendix D) 1/k-4.

Therefore, we can conclude that the RXT depends on [L], but it 
ranges between 1/k-1 (or 1/(k-3 + k-4)), when no ligand is present, and 
1/k-4, at saturating ligand concentrations. In the context of a functional 
experiment, it would be worth taking this interval into account because 
the expected pharmacological effect will be influenced by the RXT.

4. Discussion

4.1. Comparison with Johnson’s and Cornish-Bowden’s approaches

The concept of RT is frequently used in the literature but in many 
cases in a qualitative way. Quantitative expressions are scarce and are 
reduced mainly to the induced-fit model (Eq. (6)). The aim of the herein 
presented study is to provide a methodology for the determination of koff 
(and the RT by its inverse) that can be of general applicability. To this 
end, the correspondence found with two previous studies, by Johnson 
and Cornish-Bowden [4,5], whose derivations are included in 
Appendix A and Appendix B, respectively, are a good indication of the 
validity of the proposal.

The expression for koff obtained in [5] by setting [S] = 0 is given in 
equation (A9) of Appendix A. In fact, it is a simplified version of Eq. (7), 
obtained through a Taylor series to eliminate the square root. This is 
valid, but only for chemical situations such as (6), (A1) and (23). 
Johnson’s approach does not allow a generalization of koff. However, if 
we focus on Eqs. (A3) and (A4), more precisely on the expression that 
Johnson uses for koff (λ2

J) before simplifying it and setting [S] = 0, it can 
be noticed that it is the same as the formula for koff that we have ob-
tained in Eq. (24). In fact, Eq. (24) can be written as 

koff =
P −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P2 − 4Q

√

2

⃒
⃒
⃒
⃒
⃒
[S]=0

, (48) 

with P and Q defined as in (A4), see Appendix A.
On the other hand, in [4], a general solution of type (13) is obtained 

for the conformational exchange system considered. Although an 
expression for koff is not explicitly defined (because the model is quite 
general, not applied to any particular field), we can find the term 
“relaxation time” defined as the inverse of the coefficient (in absolute 
value) of the exponent of an exponential term in the analytical solution 
of the system. This is exactly the same as the RT that can be obtained 
through the eigenvalues of the system, since eigenvalues are precisely 
the coefficients of the exponents of the exponential terms. Thus, the 
expression for RT, although it is not obtained in Cornish-Bowden’s 
approach, would be one of the relaxation times he obtained (τ2), and koff 
would be λ2

C in equation (B12). Furthermore, the term “relaxation time” 
inspired us to extend RT to RXT in pharmacology for those cases that 
consider chemical species of interest with no ligand present. By doing so, 
our formalism gains in generalization and pharmacological 
applicability.

In the same way as in Johnson’s approach, the value of koff defined in 
(14) coincides with λ2

C for k1 = 0. This is analogous to setting [S] = 0, 
because it means that association processes are omitted. Therefore, we 
can state that the smallest-modulus eigenvalue-based method we pre-
sented is compatible with both Johnson’s and Cornish-Bowden’s ap-
proaches. The only minor difference is that both λ2

J and λ2
C were defined 

positive, while we take λ1 as the smallest-modulus negative eigenvalue 
and define koff as its absolute value. Furthermore, it can be considered 
that our procedure is more general than that of Johnson’s and more 
applicable than that of Cornish-Bowden’s. Regarding the latter, while 
solving the system is the most complete method, it is intractable in 
higher dimensions and when the system is nonlinear. It is much more 
effective and affordable to calculate the eigenvalues and determine 
which one has the smallest modulus.

In both [4,43] we can observe that eigenvalues are calculated 
because they are the coefficients of the exponents in the exponential 
terms of the analytical solutions, and therefore, they are essential when 
solving systems; but the concept of eigenvalue itself is not mentioned at 
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all. Eigenvalues are known to be a source of information (stability, for 
instance) of an ODE system besides being just parameters of the 
analytical solution. This idea of taking eigenvalues as a source of in-
formation is present in [16], where the concepts of fast and slow man-
ifolds are mentioned. The disparity in absolute value of the eigenvalues 
defines which ones describe slow or fast manifolds in the system. Slow 
manifolds are usually the ones that can be measured experimentally 
[12,13]. This idea supports the choice of the eigenvalue λ1 as the source 
of koff and, in fact, the usual formula for koff in Eq. (7) is just a simpli-
fication of λ1 for that system.

It is also worth commenting on the possible difficulties that may arise 
when applying this methodology to higher-dimensional examples with a 
large number of parameters. It may happen, then, that it is not so easy to 
distinguish the eigenvalue closest to zero. However, even in this case, 
the methodology that we propose can always be applied numerically if 
the values of the parameters are known, or by imposing conditions on 
the parameters that guarantee both that all the eigenvalues have nega-
tive real part and the detection of the eigenvalue closest to zero. We 
believe that it is an interesting challenge that opens new avenues for 
future research since it is an open question for all chemical reactions 
presenting a large number of agents that influence the residence time. 
Nevertheless, this methodology offers strong advantages: it is not 
necessary to calculate analytical solutions since only the eigenvalues are 
needed, and it is not necessary to deal with the complete original system, 
but only a part of it (the subsystem of interest obtained by omitting 
association or formation processes).

Notice also that hypotheses (H1) and (H2) are very generic and only 
non-generic situations are excluded. For instance, the case in which the 
smallest-modulus eigenvalue is real and repeated (mathematically 
speaking, it is said to have multiplicity 2 or greater) or the case where 
there are two or more pairs of complex conjugate eigenvalues with the 
same real part. While our methodology could also be applied, it would 
require a more thorough analysis to determine the combination of pa-
rameters of the system that defines the characteristic time. This analysis 
would imply desingularization processes of the equilibria beyond the 
classical linearizations. Nevertheless, all examples examined in this 
study clearly satisfy hypothesis (H1).

4.2. Correspondence between koff and kcat in enzymology

The eigenvalues method to obtain koff can be extended to fields other 
than pharmacology because there may be parameters that, although 
different from koff in meaning, are the same from a mathematical 
perspective. In enzymology, kcat can be considered analogous to koff in 
binding kinetics. The turnover number or catalytic constant, kcat, is defined 
as the number of moles of substrate transformed into product per minute 
per mole of active subunit or catalytic center under optimal conditions 
[44]. The overall rate of reaction progress after the enzyme-substrate 
(ES) complex formation is quantified experimentally in terms of kcat, 
which is a composite rate constant [45,46]. It can be stated that kcat is a 
first-order rate constant related to the chemical steps following the 
formation of the ES complex, so that the rate for a generic enzymatic 
reaction is equal to kcat[ES]. In the simplest case, when the ES complex 
breakdown generates the product P, kcat is equal to k2: 

E+ S
k1
⇄
k− 1

ES →
k2 E+P (49) 

However, when there are more steps between the ES complex and 
product formation, as in 

E+ S
k1
⇄
k− 1

ES
k2
⇄
k− 2

EP →
k3 E+P (50) 

kcat is a function of the rate constants that appear in the sequence of 

chemical steps: 

kcat =
k2k3

k− 2 + k2 + k3
. (51) 

Eq. (51) resembles the expression for koff in Eq. (7), which is the 
simplified formula for koff in two-dimensional systems given by Johnson 
[5]. However, at first glance, Eqs. (50) and (6) are not similar. How then 
are kcat and koff related to each other? It becomes clearer if we look at Eq. 
(50) backwards, since kcat is a global forward rate constant (from the ES 
complex to product formation) and koff is a global dissociation (back-
ward) rate constant. 

E+P←
k3 EP

k− 2
⇄
k2

ES (52) 

Although kcat and koff are conceptually different, kcat can be considered 
to play the same role as koff but for product formation rather than for 
drug dissociation from the target. The ES complex is analogous to LR*, 
and because Eq. (52) does not consider the binding of the product to the 
enzyme, but only dissociation, what is then measured is as a “global 
dissociation process” of the product. The inverse of kcat gives the time 
required for a single catalytic cycle, and this time in enzymology would 
be mathematically analogous to the residence time in binding kinetics.

4.3. Eigenvalues versus half-lifetime

In the experimental context, the function x̂(t) = ae− bt is usually used 
to fit data that show an apparent exponential decay of some concen-
tration along time, xi(t). Once a and b are estimated, the half-lifetime is 
computed as ln(2)/b [1,47}. Note that if we had a model that perfectly 
explained the experimental data, we would have that 

xi(t) =
∑n

j=1
aije− λj t , (53) 

where aij are constant values depending on the initial concentrations 
xi(0) of the i-th species. In this case, the half-life (t1/2) would be the 
solution of the equation xi(t) = xi(0)/2.

Our proposal consists of considering, for the generic case where 
hypothesis (H1) is satisfied, only the leading term of this expression, that 
is, the one corresponding to the smallest-modulus eigenvalue λ1. 
Therefore, we consider the approximation xi(t) ≈ ai1e− λ1t.

Indeed, we note that without the hypothesis (H1), there would not be 
a good fit of x̂(t) = ae− bt to the experimental data. Then, from our 
approximation of xi(t), the following approximation of the half-lifetime 
can be obtained: 

t̃1
2
=

ln2
λ1

. (54) 

Table 3 
Comparison of residence time results obtained from t1

2 
and t̃1

2 
for different 

parameter values. The ODE system for this situation is given in (17), and solu-
tions can be seen in the graphs of Fig. 3. The value t1

2 
is provided by the complete 

analytical solution of the system and is obtained by solving numerically, while t̃1
2 

is computed as ln(2)/ λ1 by using only the dominant term of the solution, which 
is the exponential term with the smallest-modulus eigenvalue λ1.

KR k2 (s¡1) Residence time using t̃1
2 

(s) Residence time using t1
2 

(s)

0.2 0.5 68.5410 68.2344
5 60.8356 60.8323
50 60.0834 60.0833

0.02 0.5 608.3562 607.8975
5 519.8076 519.8023
50 510.9804 510.9804
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For the sake of comparison, we have computed both residence times 
(obtained from t1

2 
and t̃1

2
, respectively, by dividing by ln2) for all situa-

tions described in Fig. 3. Results are shown in Table 3. It can be seen that 
the approximation defined in Eq. (54) is very accurate: there are small 
differences (below 0.5 %) as shown by the example in Fig. 9.

The above observation is equivalent to saying that, usually, behind 
the apparent exponential decay of the experimental points there may not 
be a single exponential expression (Ce− λt), but a linear combination of 
them (C1e− λ1t + C2e− λ2 t + ⋯). However, if C1e− λ1t is the leading term 
under hypothesis (H1), then it is well fit by a single exponential. It is 
usual in the literature to perform fittings to mono and biexponential 
curves [2,16,48,49], although the purpose is to find the parameter 
values of the model (such as rate constants) rather than the RT, except 
for those cases where calculation of the RT is immediate as in Eq. (1). 
The aim of the above comparison of half-lives is to show that the 
eigenvalue of the leading term provides an accurate approximation to 
obtain the RT, thus being an excellent value to take as a theoretical 
reference for comparison with the result of an experiment. It should be 
noted that, as a complement to empirical data fitting, providing the 
herein presented expression for the RT offers the possibility of 
mechanism-based modeling of experimental conditions.

In Sections 3.3 and 3.5, we present two examples of residence time 
estimation obtained from experimental data of the temporal course 
[16,36]. The example in Section 3.5 [36] is considered ideal for the 
methodology proposed here. In particular, in Fig. 7b, we observe that 
the result of the fitting to a mechanistically predicted biphasic decay is 
not different from that of an empirical monophasic decay. The reason is 
that one of the exponential terms of the biphasic decay is dominant over 
the other, so that the other is masked and is not detectable. For this type 
of situation, it is recommended for simplicity to fit the data with a 
monophasic exponential decay, bearing in mind that the mechanism- 

based expression for koff comes from the dominant term of a biphasic 
decay which depends on several rate constants of the model (see 
Appendix D.4).

On the contrary, the example included in Section 3.3 is not ideal: the 
difference between the two eigenvalues is not very large, so the domi-
nant term does not mask the other, especially at the beginning (see 
Fig. 4). Therefore, it would be incorrect to fit the data with a monophasic 
exponential decay, which can be easily verified with the values of 
Table 1. The fitting to a monophasic decay yields a RT of 85.5 min, while 
the smallest-modulus eigenvalue of the biphasic decay gives 142.8 min, 
which is very different. Taking into account that the best fitting function 
for this case is the biphasic decay, since the dominant term does not 
mask the other exponential term, another problem would be deciding 
which is the RT: the one that comes from the dominant exponential 
term, the other, or some type of average between them. If the dominant 
term is chosen, the RT will be 142.8 min, while selecting the other term 
results in a RT of 30.3 min. To address this issue, consider the following 
analogy: if a cinema is showing two movies simultaneously in two 
different rooms (one lasting two hours and the other an hour and a half) 
it cannot close until the longer movies ends. Similarly, in a scientific 
context, imagine a drug that binds to two different receptor conforma-
tions: one for 60 min and the other for 10 min. Choosing a residence time 
(RT) shorter than 60 min would be incorrect, as it would ignore the 
longer binding event (just as closing the cinema before the longest 
movies ends would be premature). Thus, even in non-ideal cases, the 
dominant term still defines the correct RT, as it captures the slowest, and 
therefore most limiting, timescale of the system [50].

4.4. Eigenvalues versus mean residence time

As stated in the introduction, the MRT is a mathematical expression 
for the RT in a pharmacokinetic context that can also be applied to 
binding kinetics by making some analogies. In this section, we want to 
show that working with the MRT formula, already shown in Eq. (9), is 
more tedious, has limitations and, moreover, if the condition is met that 
one of the eigenvalues is much smaller than the others, then the formula 
for the MRT gives 1/λ1 (in absolute value), which is the result proposed 
in this article for the RT.

To be applicable in a pharmacokinetic context, the MRT formula 
needs an analytical expression for the concentration of the ligand in all 
the compartments that have an elimination rate constant. If this idea is 
translated to the world of binding kinetics, then the “compartments” 
become ligand-receptor complexes, and the “elimination” rate constants 
become dissociation rate constants.

Thus, we obtain the MRT for three cases: A) simple dissociation (Eq. 
(1) with k1 = 0), B) dissociation after receptor deactivation (Eq. (6) with 
k1 = 0) and C) dissociation whether the receptor was previously acti-
vated or not (Eq. (42)). It is worth mentioning that all three examples are 
linear. Therefore, it is possible to obtain the analytical solution required 
for the MRT formula (9) and we can then compare with the analytical 
results obtained from the eigenvalues method. However, as mentioned 
above, the MRT may not be applicable in more complex situations.

In Case A, the MRT is 1/ λ1, while in Cases B and C, more complex 
expressions are obtained: 

MRTB =

C1
λ2

1
+ C2

λ2
2

C1
λ1
+ C2

λ2

, (55) 

MRTC =

k− 1C1+k− 3D1
λ2

1
+ k− 1C2+k− 3D2

λ2
2

k− 1C1+k− 3D1
λ1

+ k− 1C2+k− 3D2
λ2

. (56) 

Nevertheless, it can be shown that all these expressions of MRT can be 
approximated by 1/λ1 under hypothesis (H1), see the proof in 
Appendix C. It is important to note that these λ1 values are different in 
each case since they are dealing with different chemical situations. For 

Fig. 9. Comparison between the half-lifetime t1
2 

and the half-lifetime t̃1
2 

computed from the smallest-modulus eigenvalue. The chemical model used for 
this comparison is represented in Eq. (6) when k1 = 0, that is, when there is no 
association of the ligand, and the system provides the decay of the ligand- 
receptor complexes previously formed. The corresponding ODE system is 
(17). Parameter values are k-1 = 0.1 s− 1, k2 = 0.5 s− 1, KR = 0.2 and k-2 = k2 KR, 
and the initial condition is the equilibrium point when association is consid-
ered. The blue curve represents the complete analytical solution for this situ-
ation, which has two exponential terms (C1e− λ1 t + C2e− λ2 t) and gives t1

2 
by 

graphical calculation; while the red curve is a plot of only the dominant term of 
the solution: the exponential term with the smallest-modulus eigenvalue λ1, 
which gives t̃1

2 
as ln(2)/ λ1.
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Case A, λ1 = k-1; for Case B, λ1 has the following expression: 

λ1 =
k− 1 + k− 2 + k2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k− 1 + k− 2 + k2)
2
− 4k− 1k− 2

√

2
, (57) 

and for Case C, λ1 has the following expression: 

λ1 =
a −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 − 4(k− 2k− 4 + k− 3(k− 2 + k4))

√

2
, (58) 

where a = k-2 + k-4 + k4 + k-3.
The calculation of the MRT by Plusquellec and Houin [7] is appli-

cable (in principle) to any system, but it has a notable limitation: the 
analytical solution of the ODE system is needed, otherwise the MRT 
cannot be obtained analytically. It is usually easy to study and work with 
linear systems, as well as to obtain analytical solutions either using the 
Laplace transform [51] or not. However, when dealing with nonlinear 
systems, obtaining an analytical solution is clearly more difficult or even 
impossible, and this is the reason why nonlinear systems are studied by 
performing different approximations to make them linear and solving 
them under some constraints. This is not a problem if we only calculate 
the RT through the eigenvalues of the system, because the analytical 
solution is not needed. Eigenvalues can be obtained for every system, no 
matter if it is linear or nonlinear. Therefore, the eigenvalue-based 
method we present here is more practical and easier to implement.

5. Conclusions

We have presented a general mathematical formalism for residence 
time quantification that is based on the concept of the smallest-modulus 
eigenvalue of a dynamical system. The resulting expressions are 
consistent with those mostly found in the literature and, importantly, 
can be extended to other pharmacological systems in a general way: an 
application to a two-state receptor model is shown, as well as homodi-
meric, homotetrameric and heterodimeric receptors. Moreover, we 
apply this residence time definition to a system where rebinding occurs 
and we consider that the key for this case is to put the focus on the 
proximity of the receptor or the cell, rather than only on the receptor 
itself. Furthermore, we propose an extension of residence time to 
relaxation time for those cases where one is only interested in those 

receptor species responsible for the pharmacological effect, whether 
they have bound ligand or not. This generalized and widely applicable 
formulation of residence time / relaxation time is expected to be of help 
for drug discovery and development.
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Appendix A. Johnson’s approach to koff

In [5], an enzymatic system showing a mechanistic resemblance with Eq. (6) was presented: 

E+ S
k1
⇄
k− 1

ES
k2
⇄
k− 2

EX (A1) 

Scheme (A1) shows the binding of a substrate S to an enzyme E to form the substrate-enzyme complex ES in dynamic equilibrium with EX, with X 
representing a transition state of the substrate in the enzymatic process.

The general solution for the concentration of the chemical species in Eq. (A1) was proposed to be 

B(t) = A1e− λ1 t +A2e− λ2 t +D, (A2) 

with B(t) representing the variation along time of either of the E, S, ES or EX chemical species. The mathematical form of B(t) is a linear combination of 
decreasing exponentials, where λ1,2 (defined as positive values) are the coefficients of the exponents. A1 and A2 are the amplitudes of the exponential 
function and D is a constant. The expressions for parameters λ1 and λ2 are: 

λJ
1 :=

P +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P2 − 4Q

√

2
, λJ

2 :=
P −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P2 − 4Q

√

2
, (A3) 

Where 

P = k1[S] + k− 1 + k2 + k− 2,Q = k1[S](k2 + k− 2)+ k− 1. (A4) 

The superscript J is used to indicate that is a Johnson’s result.
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A Taylor series approximation for the square root followed [5]. To do this, the roots in (A3) are rearranged as 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P2 − 4Q

√
= P

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
4Q
P2

√

. (A5) 

The square root in (A5) has the form of the function 
̅̅̅̅̅̅̅̅̅̅̅̅
1 − x

√
, which can be approximated by Taylor series around x  = 0 provided that P2 ≫ 4Q. This 

inequality relies on the differences in orders of magnitude between forward (k1 and k2) and backward (k-1 and k-2) microscopic rate constants, being 
the backward ones much smaller than the forward ones.

The first order expansion of 
̅̅̅̅̅̅̅̅̅̅̅̅
1 − x

√
is 1 − x

2 and so, 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
4Q
P2

√

≈ 1 −
2Q
P2 (A6) 

up to first order. The first neglected term is the quadratic term − 2Q2/P4.Therefore, λJ
1 can be approximated by 

λJ*
1 :=

P
(

1 +

(

1 − 2Q
P2

))

2
=

2P
(

1 − Q
P2

)

2
= P −

Q
P
, (A7) 

where the asterisk is used to denote approximation. Since, P2 ≫ 4Q implies that P ≫ Q/P, it can be further approximated: 

λJ*
1 ≈ P = k1[S] + k− 1 + k2 + k− 2 (A8) 

On the other hand, 

λJ*
2 :=

P
(

1 −

(

1 − 2Q
P2

))

2
=

Q
P
=

k1[S](k2 + k− 2) + k− 1k− 2

k1[S] + k− 1 + k2 + k− 2
, (A9) 

Finally, assuming that there is no association of the substrate to the enzyme, [S] is considered to be equal to 0 in λJ*
2 , which provides Johnson’s 

approximation of koff: 

koff= λJ*
2 ([S] = 0 ) =

k− 1k− 2

k− 1 + k2 + k− 2
. (A10) 

B. Cornish-Bowden’s approach to conformational equilibria

Cornish-Bowden [4] considers the chemical system 

X0

k1
⇄
k− 1

X1

k2
⇄
k− 2

X2 (B1) 

In contrast with the process presented in Eq. (A1) [5] and that presented in Eq. (6), there is no ligand–protein binding process but just the inter-
conversion between three generic chemical species X0, X1 and X2. Eq. (B1) can be converted into (A1) or (6) by making k1 in (B1) equal to k1[S] or 
k1[L], respectively.

The ODE system that describes the variation with time of the concentration of each chemical species is the following: 
⎧
⎪⎪⎨

⎪⎪⎩

dx0

dt
= k− 1x1 − k1x0,

dx1

dt
= k1x0 − (k− 1 + k− 2)x1 + k− 2x2,

(B2) 

where x2 = xtot − x0 − x1.

Then, some substitutions and rearrangements were made to reduce the system to a single differential equation, which was solved to obtain the general 
solution for X0, X1 and X2.

First, by substituting x2 in the second equation of (B2), we get: 

dx1

dt
= k1x0 − (k− 1 + k− 2)x1 + k− 2(xtot − x0 − x1) = (k1 − k− 2)x0 − (k− 1 + k− 2 + k2)x1 + k− 2xtot . (B3) 

Then, dx0/dt is differentiated to obtain d2x0/dt2, and dx1/dt is substituted in d2x0/dt2 according to (B3): 

d2x0

dt2 = − k1
dx0

dt
+ k− 1

dx1

dt
= − k1

dx0

dt
+ k− 1(k1 − k− 2)x0 − k− 1(k− 1 + k− 2 + k2)x1 + k− 1k− 2xtot . (B4) 
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The variable x1 can be eliminated from d2x0/dt2 if k-1x1 is isolated in the first equation of (B2) and the resulting expression is substituted in d2x0/dt2. 

dx0

dt
+ k1x0 = k− 1x1,

d2x0

dt2 = − k1
dx0

dt
+ k− 1(k1 − k− 2)x0 − (k− 1 + k− 2 + k2)

(
dx0

dt
+ k1x0

)

+ k− 1k− 2xtot. (B5) 

Rearranging terms, the following second order ODE is obtained: 

d2x0

dt2 + (k1 + k− 1 + k− 2 + k2)
dx0

dt
+ (k− 1k− 2 + k1k2 + k1k− 2)x0 = k− 1k− 2xtot . (B6) 

If we compare the coefficients of dx0/dt and x0 to P and Q expressions (A4), it can be seen that they are equal taking into account that k1 is multiplied 
by [S] or [L] when the first reaction is a binding process. By this way, equation (B6) can be rewritten as: 

d2x0

dt2 +P
dx0

dt
+Qx0 = R. (B7) 

It was stated [4] that the solution of equation (B7) is a linear combination of decreasing exponential functions, but instead of denoting the coefficients 
of the exponentials as λ1,2 as in [5], they were denoted as 1/τ1,2. τ1,2 were referred as the relaxation constants of the exponentials, and the negative sign 
in the exponentials was included, so that the expressions for 1/τ1,2 are positive: 

x0(t) = x0eq +A1e
− t
τ1 +A2e

− t
τ2 . (B8) 

It was not described how the relaxation times from the second order ODE were obtained, but the procedure is described here. First, we suppose that the 
solution is a decreasing exponential, and substitute this proposal in (B7) in its homogeneous form, or in other words, setting the expression equal to 
0 instead of R: 

x0 = Ae− λtdx0

dt
= − λAe− λtd2x0

dt2 = λ2Ae− λt, (B9) 

λ2Ae− λt − PλAe− λt +QAe− λt = 0. (B10) 

Since neither the exponentials nor A can be 0, (B10) can be simplified to a second degree equation and two values of λ are obtained (which are 
equal to the reciprocal of relaxation times). Superscript C is used to indicate that is Cornish-Bowden’s result, to distinguish between authors: 

λ2 − Pλ+Q = 0, (B11) 

λC
1 :=

P +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P2 − 4Q

√

2
=

1
τ1

λC
2 :=

P −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P2 − 4Q

√

2
=

1
τ2
. (B12) 

Of note, an expression for koff was not obtained in [4], which is logical since no binding was included in the system (it is a general situation). 
However, the applied procedure is relevant as a reference for the methods here developed.

C. General proof of MRT ≈ λ1 if the solution of the system is a linear combination of decreasing exponentials

In Cases A, B and C in Section 4.4., an expression for MRT is obtained. However, for these three cases and, in general, considering a system where 
the analytical solution xi(t), for i = 1,…,n, consists of a linear combination of m decreasing exponentials, it can be shown that MRT ≈ 1/λ1, where λ1 is 
the absolute value of the smallest modulus eigenvalue of the system for each case. Let us prove it: set 

xi(t) =
∑m

j=1
Cije− λj t . (C1) 

Substituting (C1) in (8), we obtain the following density function: 

ϕ(t) =
∑n

i=1ki
∑m

j=1Cije− λj t

∫∞
0
∑n

i=1ki
∑m

j=1Cije− λj tdt
=

∑n
i=1ki

∑m
j=1Cije− λj t

∑n
i=1ki

∑m
j=1

Cij
λj

, (C2) 

and then, MRT is obtained from the density function by calculating the mean value: 

MRT =

∫ ∞

0
t⋅
∑n

i=1ki
∑m

j=1Cije− λj t

∑n
i=1ki

∑m
j=1

Cij
λj

dt =
∫∞

0 t⋅
∑n

i=1ki
∑m

j=1Cije− λj tdt
∑n

i=1ki
∑m

j=1
Cij
λj

=

∑n
i=1ki

∑m
j=1Cij

∫∞
0 te− λj tdt

∑n
i=1ki

∑m
j=1

Cij
λj

=

∑n
i=1ki

∑m
j=1

Cij
λ2

j
∑n

i=1ki
∑m

j=1
Cij
λj

. (C3) 

After that, we multiply the numerator and the denominator by λ1
2 and, up to this point, we have not used the hypothesis that λ1 is much smaller than the 

rest of the eigenvalues (as assumed in this article). Under this hypothesis, it can be observed that only the first term of the sums in j is relevant and the 
rest can be obviated because their contribution is small compared to the first one: 
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MRT
(
λ1≪λj>1

)
=

λ2
1
∑n

i=1ki
∑m

j=1
Cij
λ2

j

λ2
1
∑n

i=1ki
∑m

j=1
Cij
λj

=

∑n
i=1ki

∑m
j=1

λ2
1Cij

λ2
j

∑n
i=1ki

∑m
j=1

λ2
1Cij
λj

=

∑n
i=1ki

∑m
j=1

λ2
1Cij

λ2
j

∑n
i=1ki

∑m
j=1

λ2
1Cij
λj

≈

∑n
i=1kiCi1

∑n
i=1kiλ1Ci1

=

∑n
i=1kiCi1

λ1
∑n

i=1kiCi1
=

1
λ1
, (C4) 

which coincides with the definition of residence time proposed in this article.

D. Mathematical computations to obtain the residence times provided in the results

This appendix contains mathematical technicalities that lead to the RT expressions in the main text.

D.1. The conformational induction model (see Section 3.2)

Let us define the right-hand side parts of system (17), for the two chemical species of interest, LR and LR* as 
{

F([LR], [LR*] ) := − (k− 1 + k2)[LR] + k− 2[LR*],

G([LR], [LR*] ) := k2[LR] − k− 2[LR*].
(D1) 

To obtain the eigenvalues of the system, we compute the Jacobian matrix, formed by the partial derivatives of F and G, 

J =

(
− (k− 1 + k2) k− 2

k2 − k− 2

)

, (D2) 

and then obtain the roots (zeros) of the characteristic polynomial P(λ) = det(J − λId), where Id is the identity matrix. Therefore, they are obtained by 
solving 
⃒
⃒
⃒
⃒
− (k− 1 + k2) − λ k− 2

k2 − k− 2 − λ

⃒
⃒
⃒
⃒ = 0, (D3) 

which leads to the degree-two polynomial 

λ2 +(k− 1 + k− 2 + k2)λ+ k− 1k− 2 = 0. (D4) 

The roots of the polynomial are, then, 

λm :=
− (k− 1 + k− 2 + k2) − ( − 1)m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k− 1 + k− 2 + k2)
2
− 4k− 1k− 2

√

2
,m = 1, 2. (D5) 

Note that we could have also obtained expression (D5) directly from (21) since the determinant and the trace of the matrix (D2) are det(J) = k− 1k− 2 
and tr(J) = − (k− 1 + k− 2 + k2).

Observe also that our procedure applies for this model since the expression inside the square root is always positive and so hypothesis (H1) is 
fulfilled; indeed, notice that 

(k− 1 + k− 2 + k2)
2
− 4k− 1k− 2 = (k− 1 − k− 2 + k2)

2
+4k− 2k2, (D6) 

which is positive since all constants kj are positive. Moreover, we have that λ2 < λ1 < 0, which implies that the equilibrium is an attractor, and that the 
smallest-modulus eigenvalue is λ1. In fact, it is a global attractor [8] since system (17) is linear, that is, all solutions of the system tend to the 
equilibrium regardless of the initial concentrations of the species. Therefore, we conclude that 

koff = |λ1| =
(k− 1 + k− 2 + k2) −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k− 1 + k− 2 + k2)
2
− 4k− 1k− 2

√

2
. (D7) 

Equation (D7) corresponds to equation (24) in the main text.

D.2. The doubly and singly-occupied homodimer model (see Section 3.4.1.2)

For the doubly and singly-occupied homodimer model ODE system (32), its associated Jacobian matrix is 

J =

(
− 2k− 2 0
2k− 2 − k− 1

)

(D8) 

whose eigenvalues are λ1 = -2k-2 and λ2 = -k-1.

D.3. The homotetrameric receptor model (see Section 3.4.2)

The linear ODE sytem corresponding to the homotetrameric receptor model is given by 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[L4R4]

dt
= − 4k− 4[L4R4],

d[L3R4]

dt
= 4k− 4[L4R4] − 3k− 3[L3R4],

d[L2R4]

dt
= 3k− 3[L3R4] − 2k− 2[L2R4],

d[LR4]

dt
= 2k− 2[L2R4] − k− 1[LR4].

(D9) 

Thus, its associated Jacobian matrix is  

J =

⎛

⎜
⎜
⎝

− 4k− 4 0 0 0
4k− 4 − 3k− 3 0 0

0 3k− 3 − 2k− 2 0
0 0 2k− 2 − k− 1

⎞

⎟
⎟
⎠ (D10) 

and the eigenvalues λ are the roots of the characteristic polynomial of degree four: 

( − 4k− 4 − λ)( − 3k− 3 − λ)( − 2k− 2 − λ)( − k− 1 − λ) = 0 (D11) 

Solving for λ, four eigenvalues are obtained: λ1 = -4k-4, λ2 = -3k-3, λ3 = -2k-2 and λ4 = -k-1. Observe that the triangular structure of the Jacobian 
matrix (D10) is maintained for homomers with n protomers, giving 

τ = max
m=1,⋯,n

{
1

mk− m

}

. (D12) 

D.4. The allosteric ternary complex model (see Section 3.5)

The nonlinear ODE system corresponding to the Eq. (38) is: 
⎧
⎪⎪⎨

⎪⎪⎩

d[AR]
dt

= k− 3[ARB] − k3[B][AR] − k− 1[AR],

d[ARB]
dt

= k3[B][AR] − (k− 3 + k− 4)[ARB].
(D13) 

The associated Jacobian matrix is:

J =

(
− k3[B] − k− 1 k− 3

k3[B] − k− 3 − k− 4

)

, (D14) 

which leads to:

tr(J) = − (k3[B] + k− 1 + k− 3 + k− 4 ), det(J) = k− 4k3[B] + k− 1k− 3 + k− 1k− 4. (D15) 

The Jacobian matrix (D14) depends on the free concentration of B, so the matrix needs to be evaluated for a value of [B]. If ligand B is in excess with 
respect to the total receptor concentration, then [B] is approximately constant and equal to its total amount [Btot]. If it is not in excess, [B] has a more 
complex expression. However, for the purpose of this section it is not necessary to go into these details: it is enough to know that [B] is not a variable, 
but a fixed value in this subsystem of interest.

The eigenvalues and the expression for koff can be obtained plugging the expressions in (D15) into (21) and (22), respectively. Notice that we are 
under hypothesis (H1) since. 

tr(J)2
− 4det(J) = (k3[B] + k− 1 + k− 3 + k− 4 )

2
− 4(k− 4k3[B] + k− 1k− 3 + k− 1k− 4) =(k3[B] + k− 1 − k− 3 − k− 4 )

2
+4k3k− 4[B] > 0. (D16) 

For the RT of ligand A to be higher in the presence of B, the koff when A is alone must be higher. That is, 

− tr(J) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr(J)2
− 4det(J)

√

2
< k− 1 (D17) 

must be satisfied. Working on inequation (D17) and simplifying, the following condition is obtained: 

k− 4 < k− 1 ⇔ α− < 1 (D18) 

D.5. The rebinding case model (see Section 3.6)

The nonlinear ODE system corresponding to the rebinding model (40) is written as 
⎧
⎪⎪⎨

⎪⎪⎩

d[L]
dt

= − k1[L]([Rtot] − [LR] ) − kel[L] + k− 1[LR],

d[LR]
dt

= k1[L]([Rtot] − [LR] ) − k− 1[LR].
(D19) 
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Note that (D19) is nonlinear because of the factors [L][LR].
In particular, the Plusquellec and Houin approach for finding the MRT explained in (9) cannot be applied because we cannot find an explicit 

general expression for the solution. In contrast, it is straightforward to find the smallest-modulus eigenvalue and apply our methodology. Let us 
consider the Jacobian matrix associated to the system (D19): 

J([L], [LR] ) =
(
− k1[Rtot] − kel + k1[LR] k1[L] + k− 1

k1[Rtot ] − k1[LR] − k1[L] − k− 1

)

. (D20) 

Due to the nonlinearity of the system, it depends on [L] and [LR] and therefore needs to be evaluated at some point before continuing with the 
protocol: it is easy to prove that [L] = [LR] = 0 is the only possibility for an equilibrium of the system. At this equilibrium point, the Jacobian matrix 
becomes. 

J([L] = 0, [LR] = 0 ) =

(
− k1[Rtot ] − kel k− 1

k1[Rtot] − k− 1

)

(D21) 

The determinant and the trace of J are: 

det(J(0,0) ) = kelk− 1, tr(J(0,0) ) = − (k1[Rtot] + kel + k− 1 ). (D22) 

The expression of koff for the ligand inside the cell (or in the vicinity of the receptor) for this case can be computed as in equation (22) with the 
determinant and the trace obtained in (D22): 

koff = |λ1| =
k1[Rtot ] + kel + k− 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k1[Rtot] + kel + k− 1 )
2
− 4kelk− 1

√

2
(D23) 

Equation (D23) corresponds to equation (41) in the main text. Notice that we are under hypothesis (H1) since 

(k1[Rtot ] + kel + k− 1 )
2
− 4kelk− 1 = (k1[Rtot ] + kel − k− 1 )

2
+4k1k− 1[Rtot] > 0. (D24) 

D.6. Residence time for ligand-receptor complexes (see Section 3.7.1)

The two-dimensional ODE system for LR and LR* dynamics is written as 
⎧
⎪⎪⎨

⎪⎪⎩

d[LR]
dt

= − (k− 2 + k4)[LR] + k− 4[LR*],

d[LR*]

dt
= k4[LR] − (k− 3 + k− 4)[LR*].

(D25) 

The Jacobian matrix is obtained straightforwardly from system (D25): 

J =

(
− (k− 2 + k4) k− 4

k4 − (k− 3 + k− 4)

)

. (D26) 

The determinant and the trace of J are: 

tr(J) = − (k− 2 + k− 3 + k− 4 + k4) , det(J) = k− 2k− 4 + k− 2k− 3 + k− 3k4. (D27) 

Then, koff is computed as in (22) with the trace and the determinant (D27). Notice that we are under hypothesis (H1) since 

(k− 2 + k− 3 + k− 4 + k4)
2
− 4(k− 2k− 4 + k− 2k− 3 + k− 3k4) = (k− 2 − k− 3 − k− 4 + k4)

2
+4k4k− 4 > 0 (D28) 

D.7. Relaxation time of the active receptor species (see Section 3.7.3)

From the Eq. described in (46), we are led to equation (47). Proceeding as in the previous examples, we get. 

tr(J) = − (k− 1 + k− 3 + k− 4 + k3[L] ) , det(J) = k− 1k− 3 + k− 1k− 4 + k− 4k3[L]. (D29) 

Notice that we are under hypothesis (H1) since. 

(k− 1 + k− 3 + k− 4 + k3[L] )2
− 4(k− 1k− 3 + k− 1k− 4 + k− 4k3[L] ) = (k− 1 − k− 3 − k− 4 + k3[L] )2

+4k3k− 3[L] > 0. (D30) 

The RXT is computed plugging the expressions from (D29) into (22) and, hence, the RXT depends on the free ligand concentration.
In system (47), when considering [L] = 0 under basal conditions, the RXT is equal to 1/k-1 because the only chemical species that remains is R*. On 

the contrary, if a fast elimination process is considered, the RXT can be obtained by setting [L] = 0 in tr(J) and det(J) (D29) and then simplifying τ, the 
inverse of the expression (22), to yield the following: 
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τ|[L]=0 =
2

− tr(J) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr(J)2
− 4det(J)

√

⃒
⃒
⃒
⃒
⃒
⃒
⃒
[L]=0

=
2

k− 1 + k− 3 + k− 4 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k− 1 + k− 3 + k− 4)
2
− 4(k− 1k− 3 + k− 1k− 4)

√ =
2

k− 1 + k− 3 + k− 4 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k− 1 − k− 3 − k− 4)
2

√

=
2

k− 1 + k− 3 + k− 4 − |k− 1 − k− 3 − k− 4|
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
k− 3 + k− 4

if k− 1 > k− 3 + k− 4,

1
k− 1

if k− 1 ≤ k− 3 + k− 4.

(D31) 

At saturating ligand concentrations, the limit of τ as [L] increases can be calculated (by multiplying and dividing the inverse of (22) by the 
conjugate of the denominator): 

lim
[L]→+∞

τ = lim
[L]→+∞

2

− tr(J) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr(J)2
− 4det(J)

√ = lim
[L]→+∞

− tr(J) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr(J)2
− 4det(J)

√

2det(J)
= lim

[L]→+∞

a + k3[L] +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a + k3[L] )2
− 4(k− 4k3[L]+b)

√

2(k− 4k3[L]+b)

= lim
[L]→+∞

k3[L] +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k3[L] )2
√

2k− 4k3[L]
= lim

[L]→+∞

2k3[L]
2k− 4k3[L]

=
1

k− 4
, (D32) 

where a = k-1 + k-3 + k-4 and b = k-1k-3 + k-1k-4.

Data availability

No data was used for the research described in the article.
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