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1. Executive Summary 
Chronic pain affects nearly one in five Europeans and remains a major clinical and societal 
challenge due to its complex pathophysiology and the limited efficacy of current treatments. 
Opioids, while widely used, present significant risks and often fail to provide lasting relief. 
Combination therapies offer a more rational approach, targeting multiple mechanisms to 
improve outcomes and reduce side effects. However, identifying effective drug combinations 
is hindered by biological variability, limited clinical trial data, and poor translation from animal 
models. 

QSPainRelief proposes an innovative, model-based solution using Quantitative Systems 
Pharmacology (QSP) to simulate and predict the effects of CNS-active drug combinations in 
silico. By integrating pharmacokinetic, pharmacodynamic, and neural circuit models, including 
patient-specific factors, QSPainRelief aims to optimize combination strategies and support 
personalized pain management. While promising, the approach still faces challenges, 
particularly the need for better biological understanding of chronic pain mechanisms and their 
incorporation into QSP models. Nonetheless, this initiative marks an important step toward 
more effective, safer, and individualized therapies for chronic pain. 

 

 

  



H2020 research and innovation programme (848068)
   

 

 
D9.10 - White paper on new effective combinational treatment of chronic pain in individual patients 
 
  Page 6 of 26 

2. Deliverable Report 

2.1. Introduction 
2.1.1. Chronic pain and its impact on patients and healthcare 
Chronic pain, defined as pain lasting longer than three months, is one of the most prevalent 
and complex medical conditions1. It affects about 20% of the European population, 
particularly women and older adults2, 3. Chronic pain severely impacts quality of life, limits 
mobility, disrupts daily activities and social interactions, and is associated with mental health 
comorbidities such as depression4, 5. 

The socio-economic burden of chronic pain is major, costing up to €300 billion annually in 
Europe due to increased healthcare use, productivity loss, and premature workforce exit6, 7. 
This underscores the urgent need for more effective and sustainable treatment strategies. 

An important step towards improved recognition and diagnosis of chronic pain has been its 
inclusion in the 11th edition of the International Classification of Diseases (ICD-11). This new 
classification formally distinguishes between chronic primary pain (a disease in its own right) 
and chronic secondary pain (in which pain is a symptom secondary to an explained medical 
condition such as chronic pain following surgery or injury)8. 

Chronic pain is a multifactorial condition encompassing biological, psychological and social 
factors which must be apprehended using a biopsychosocial framework. The pathophysiology 
of chronic pain involves a complex combination of genetic, physiological, neurochemical, and 
inflammatory mechanisms9, 10. Central and peripheral sensitization, along with psychological 
factors such as anxiety or pain catastrophizing, contribute to chronicity and poor treatment 
outcomes11-14. This intricate interplay of biological and psychological dimensions contributes 
to the challenge of effectively managing chronic pain and highlights the limitations of current 
therapeutic strategies15. 

 

2.1.2. Limited efficacy of current treatments 
The primary goals in chronic pain management are to reduce pain, improve function, and 
enhance overall quality of life while minimizing treatment-related side effects. Treatment 
strategies include both pharmacological (e.g., opioids, antidepressants, anticonvulsants, 
NSAIDs) and non-pharmacological approaches16-18. 

Despite the available treatment options, about 60% of patients report insufficient relief, and 
many discontinue treatment due to adverse effects2. 

The limited efficacy of current treatments is thought to be related to the complexity and 
heterogeneity of chronic pain conditions. Patient-specific factors such as age, sex, genetic 
background but also psychosocial factors, significantly influence both susceptibility and 
treatment response and many trials fail to demonstrate consistent efficacy across 
populations19-21. 

As a result, there is increasing interest in mechanism-based approaches and better patient 
stratification22. 
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2.1.3. Opioid-based treatments for chronic pain 
Opioids, despite their proven efficacy in treating nociceptive and mixed pain conditions, such 
as cancer-related pain, present numerous clinical challenges23. Long-term opioid therapy is 
associated with significant risks, including the development of tolerance (requiring escalating 
doses for the same effect), physical dependence, and the potential for addiction. Moreover, 
opioid-induced side effects such as constipation, sedation, respiratory depression, and 
cognitive impairment can severely impact patients’ quality of life and limit treatment 
adherence.¹² These complications are especially concerning in chronic pain populations, 
where extended treatment durations increase the likelihood of adverse outcomes¹². A 
substantial proportion of patients treated with oral morphine report insufficient analgesia, 
intolerable side effects, or both, underscoring the need for alternative strategies in chronic 
pain management24.  

Moreover, many patients report insufficient analgesia or intolerable adverse effects with 
opioids such as oral morphine, underlining the need for better alternatives. Long-term opioid 
use is strongly linked to dependence, and addressing this issue has become a public health 
priority. Agencies such as the CDC and FDA advocate for safer and more effective treatment 
regimens. 

 

2.1.4. Combination therapies 
Most analgesics cannot be prescribed at unlimited doses due to ceiling effects and safety 
concerns. Furthermore, single-drug treatments cannot adequately address the multiple 
pathways involved in pain pathogenesis25. Many agents also impair mobility, memory, and 
physical activity, all of which are essential for rehabilitation26. 

The development of new analgesics remains slow and uncertain. Drug discovery in this field is 
challenging and has not yielded a new class of approved agents in decades. The approval rate 
for CNS-active drugs is about 14%, lower than the general average of 20%27. 

Given these limitations, combination pharmacotherapy has emerged as a promising strategy. 
Formally described in the 1980s and popularized by Kehlet and Dahl, combination 
pharmacotherapy or “multimodal analgesia” is recommended for with partial or inadequate 
responses to monotherapy28. The rationale for this recommendation is that targeting multiple 
pain mechanisms may enhance efficacy, and combining drugs at lower doses may improve 
safety and tolerability. Evidence indicates that more than 50% of chronic pain patients receive 
at least two medications concurrently.  

Mechanistically, chronic pain involves both excitatory and inhibitory pathways29. Treatments 
like opioids enhance inhibition, while drugs like gabapentin or pregabalin reduce excitation30, 

31. A rational combination approach might involve targeting both peripheral and central 
mechanisms to block pain transmission and modulate its effects centrally. Frequently used 
combinations include paracetamol with opioids, NSAIDs with opioids, muscle relaxants with 
opioids, and various antidepressant-anticonvulsant pairings32, 33. 

However, rigorous clinical trials assessing these combinations remain scarce, and there is an 
urgent need for systematic, mechanism-based approaches to identify, assess, and personalize 
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combination therapies – ultimately aiming for more effective and tailored chronic pain 
management. Available evidence for the effectiveness of treatment combinations is variable. 
While some pairings outperform their individual components, others do not, underlining the 
importance of combination-specific research34. Systematic reviews and meta-analyses on this 
topic often reach inconclusive results, hindered by small sample sizes, data heterogeneity, and 
lack of placebo-controlled designs. Moreover, many trials fail to compare both components 
individually, limiting our ability to draw robust conclusions32. 

Studies comparing opioid monotherapy with opioid-non-opioid combination therapy have 
provided insights into optimizing pain management strategies. Some reviews suggest that 
combining opioids with non-opioid analgesics, such as NSAIDs or acetaminophen, can enhance 
analgesic efficacy while reducing the required opioid dose, thereby mitigating associated risks 
such as tolerance, dependence, and adverse effects35-37. 

 

2.1.5. Quantitative Systems Pharmacology (QSP):  A model-driven approach to 
optimise combination treatments 

The sheer number of possible drug-dose combinations presents a major challenge. For 
example, testing just three doses of an opioid with three doses of one of 20 augmentation 
drugs would already require 180 combinations. Including multiple opioids, more 
augmentation agents, and accounting for patient characteristics such as age, sex, or pain 
aetiology increases this number exponentially. Exhaustive exploration through animal studies 
or clinical trials is therefore impractical due to cost, time, and feasibility constraints. 

While big data might appear as an alternative, real-world data remain sparse for many 
combinations and rarely provide mechanistic insights. To address this, we propose a model-
driven approach based on Quantitative Systems Pharmacology (QSP). 

QSP is an interdisciplinary and holistic modelling approach that studies drug effects on the 
complex interactions within and between biological systems, from the molecular to the 
population level, using advanced mathematical and computational tools. It represents a 
powerful convergence of pharmacology and systems biology, aiming to understand and 
predict therapeutic and adverse effects in a mechanistic and integrative manner. 

QSP integrates multiple layers of biological knowledge, encompassing 
pharmacokinetics/pharmacodynamics (PK/PD), physiologically based pharmacokinetics 

(PBPK) models, and biophysically realistic neural models, to simulate drug action across 
biological scales. These models can link drug dosing to time-dependent brain concentrations, 
target engagement, and downstream physiological and behavioural effects. 

PBPK models predict how drugs are absorbed, distributed, metabolized, and excreted (ADME), 
as well as their kinetics at target sites within the central nervous system (CNS). These outputs 
– such as receptor occupancy over time – are then fed into spiking neuronal network models 
to simulate system-level outcomes including analgesia, sedation, cognitive impairment, and 
abuse liability. 
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QSP relies on dynamic, mechanistically grounded modelling to build realistic, knowledge-
based simulation platforms. These platforms are increasingly used across biomedical sciences 
to support drug discovery, understand disease mechanisms, and anticipate patient-specific 
treatment responses, including those influenced by age, sex, genetics, or comorbidities. 

By leveraging these multi-scale models, researchers can simulate and predict clinical 
outcomes in silico, significantly accelerating and focusing experimental efforts. This stepwise 
modelling, from drug dosing to target exposure, neural response, and clinical prediction, is 
illustrated in Figure 1. 

Figure 1. QSP modelling from drug dosing to systems effect. 

 

2.2. The QSPainRelief project 
QSPainRelief is an H2020-funded research project aiming at developing a QSP approach for 
the development of optimal combination treatments for chronic pain38-40. The QSPainRelief 
platform is an in-silico simulation platform capable of predicting in individual patients the 
effects of novel CNS-active drug combinations, with a specific focus on opioid-non-opioid 
combinations41, 42. 

QSPainRelief brings together expertise from academia, industry, clinical practice, and patient 
organizations to construct multiscale models that reflect drug actions from target site 
engagement to system-level responses. The platform aims to advance scientific 
understanding, reduce reliance on costly and slow trial-and-error methods in clinical 
development, guide clinicians, and inform healthcare and regulatory decisions. 
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By integrating patient-specific factors such as age, sex, and psychosocial traits, the platform 
supports a personalized medicine approach, tailoring treatment combinations to maximize 
efficacy while reducing adverse effects. 

Ultimately, QSPainRelief aims for a shift towards more mechanistically-informed and patient-
centred pain management strategies. In analgesic drug development, empirical correlations 
between drug exposure and clinical pain scores are usually characterized by PK-PD models for 
clinical pain. The latter estimate parameters such as the maximal analgesic effect, the 
concentration of half-maximum effect, and the effect-site equilibration rate constant, which 
help to quantitatively explain analgesic exposure-response relationships. To facilitate 
personalized treatment, these models may additionally incorporate predictors of the inter-
individual variability of these parameters (e.g.: age, body weight, or organ function). However, 
most PK-PD models do not explore the causal relationship or the mechanistic basis between 
the various elements influencing pain perception. Consequently, their application for 
translational purposes – that is, making predictions across species or patient populations – is 
limited. Nevertheless, in certain PK-PD studies, biomarkers are employed as a mechanistic link 
between drug exposure and clinical response; thus, they have important advantages in terms 
of translation and prediction. However, as pain is a problem with various interacting 
components, only PK-PD models are not enough. The complete characterization of pain and 
its pharmacological, physiological, and psychological processes is made possible by using QSP 
approaches41. 

QSP models have improved properties for translation and prediction since they can enable the 
simultaneous analysis of multiple clinical studies in comparable pain conditions. Findings and 
biomarkers that may be applied to various patient populations would be especially helpful for 
those who are unable to self-report their pain. 

In drug development, QSP models might help to identify and validate new drug targets or 
suggest suitable combinations of existing drugs. Furthermore, they would provide a better 
basis for the prediction of optimal dose regimens and translation (e.g., preclinical to clinical or 
between different human populations). Lastly, the translational performance of preclinical 
pain models may be enhanced by the biomarkers derived from QSP methods41. 

Computational pharmacology thus has the potential to address some of the challenges of 
analgesic drug discovery. It can elucidate pain mechanisms, guide the analgesic target 
selection, analyse the chemical structural data about ligands and proteins to design more 
effective and safer analgesics, predict the analgesics’ mechanism of action and adverse 
effects, facilitate the animal-to-human translation, and patient stratification27. 
 

2.3. The QSPainRelief modelling platform 
2.3.1.  Integrating pharmacokinetics and systems pharmacology 
2.3.1.1. Overview of PBPK and QSP models 
PBPK models represent the organism as interconnected compartments (e.g., liver, kidney, 
brain) and simulate absorption, distribution metabolism and excretion (ADME) processes 
using physiological flows and anatomical features43. By incorporating detailed individual 
biological parameters, they can account for inter-individual variability, including species, age, 



H2020 research and innovation programme (848068)
   

 

 
D9.10 - White paper on new effective combinational treatment of chronic pain in individual patients 
 
  Page 11 of 26 

sex, genetics, and disease states44. This mechanistic foundation makes PBPK models highly 
relevant for translating animal or in vitro data to humans45. 

Typical PBPK inputs include 

• Drug-specific parameters: molecular mass weight (MW), ionization constants 
pKa/pKb, lipophilicity (LogP), polar surface area, H-bond donors/acceptors. 
 

• System-specific parameters: organ volume, blood flow, membrane properties, pH. 
 
• Biological parameters: plasma protein binding, tissue binding, receptor affinities, 

transporter activity.  
 

• Kinetic parameters: absorption rates, elimination constants, and enzyme kinetics 
such as Michaelis–Menten parameters. 

Together, these parameters determine drug kinetics at the compartmental level and are thus 
essential to predict CNS exposure 46. 

While PBPK provides detailed pharmacokinetics, it often misses system-level effects like 
cellular feedback or disease dynamics. QSP, on the other hand, models drug effects on 
biological systems at a broader level. It simulates how drugs influence complex networks, such 
as receptor binding, signalling pathways or gene expression. It combines data from molecular 
biology, pharmacology, and clinical research. By integrating PBPK’s in-depth pharmacokinetics 
with QSP’s systems-level understanding, the combined approach offers a comprehensive 
framework for understanding drug action across diverse scenarios. 

 

2.3.1.2. CNS drug distribution and implementation in QSPainRelief 
Multiple factors govern the transport of drug molecules into and out of the CNS, and their 
distribution within it. Physiological CNS compartments include the brain microvascular space 
(brainMV), brain extracellular fluid (brainECF), brain intracellular fluid (brainICF), and several 
cerebrospinal fluid (CSF) spaces. CNS drug distribution depends on physiological fluid flows, 
passive and active transport across the blood-brain barrier (BBB) and blood-CSF barrier 
(BCSFB), extracellular–intracellular exchange, and pH gradients. Physiological fluid flows 
include cerebral blood flow (CBF), brainECF bulk flow, and CSF flow47. 

For the QSPainRelief platform, we integrate the CNS PBPK model (LeiCNS-PK3.0) with QSP 
neural circuit models covering analgesia, sedation, cognition, and abuse liability. These models 
require target occupancy data, which depends on target-site exposure, expression, and 
binding kinetics48. 

The LeiCNS-PK3.0 model is currently the most comprehensive CNS PBPK model available. It 
includes compartments for the brain microvasculature, BBB, BCSFB, brainECF, brain cells, 
subcellular lysosomes, and CSF in lateral ventricles, third and fourth ventricles, cisterna 
magna, and subarachnoid space49, 50. 

This model captures both bound/unbound and ionized/unionized drug species in each 
compartment, enabling accurate predictions of CNS drug kinetics. It supports the estimation 
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of CNS target-site exposure based on plasma PK profiles and brain barrier properties. 
Combined with data on target expression and binding kinetics (association/dissociation rates), 
the model enables prediction of target occupancy, a critical input for QSP-based simulation of 
pharmacodynamic outcomes48. The LeiCNS PBPK 3.0 model predictions are shown for 
examples for rat (Figure 2A) as well as human (Figure 2B), with predictions being within 2-fold 
error of actually observed data in humans from other studies. 

A.  

B. 

Figure 2. The LeiCNSPK3.0 physiologically based pharmacokinetic model uses CNS system-
specific properties, drug-specific properties, and plasma PK parameters to predict CNS-region 
specific predictions of drug disposition and has been validated for both (A) rat and (B) humans. 
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With a given plasma PK profile for a certain dose regimen, and information on the extent of 
drug distribution at the brain barriers, this model can be used to predict CNS target site 
exposure (PK profiles) at relevant target sites. Combined with target expression for a certain 
CNS region, and drug specific target association and dissociation rate constants, the target 
occupancy profiles can be predicted. 

 

2.3.2. CNS drug distribution: from plasma to target site 
2.3.2.1. Plasma pharmacokinetics and brain entry 
The concentration-time profile (PK) of unbound drug concentrations in plasma plays a crucial 
role in drug transport across brain barriers. The neutral unbound drug molecules can pass the 
cell membranes of the brain barriers, while all unbound molecules (if small enough) can pass 
between the barrier cells. 

 

2.3.2.2. Transport across the blood brain barrier 
The BBB and BCSFB regulate the movement of drugs into and out of the brain. While 
structurally distinct, formed by endothelial cells (BBB) and choroid plexus epithelial cells 
(BCSFB), both regulate transport based on molecular properties such as lipophilicity, size, 
shape, charge, and transporter affinity. 

Drug transport mechanisms include: 

● Simple diffusion, a passive process that moves drug molecules along a concentration 
gradient, from areas of high to low concentration. Only unbound and sufficiently small 
or lipophilic molecules can cross membranes this way. For hydrophilic drugs, 
movement is strongly restricted by tight junctions, limiting paracellular transport 
across the BBB. 

● Facilitated diffusion, also a passive process, which requires specific transporter 
proteins to carry molecules across membranes. This process is saturable: once all 
transporter sites are occupied, additional substrate cannot increase the rate. 
Facilitated diffusion plays a role in transporting substances like amino acids, 
monocarboxylates, nucleosides, and small peptides across the BBB. 

● Fluid Phase (vesicular) Transport Fluid encompasses processes like pinocytosis, 
adsorptive-mediated endocytosis, and receptor-mediated endocytosis. While 
generally minimal in the BBB, receptor-mediated transport allows specific large 
molecules to cross via vesicles. These vesicles may either deliver their content into the 
brain or be degraded before release. 

● Active Transport, an energy-dependent mechanism that moves drugs against their 
concentration gradient via membrane-bound transport proteins, involves membrane 
transport proteins that specifically bind and transport molecules against concentration 
gradients. This process is temperature-sensitive and can become saturated. Active 
transport can be influenced by competitive and non-competitive inhibitors and protein 
phosphorylation. Transport proteins are critical in drug development and play a 
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significant role in maintaining brain homeostasis for endogenous compounds. 
However, many drugs are also ligands for these transporters. 

● Efflux transporters, such as P-glycoprotein (P-gp), multidrug resistance proteins 
(MRPs), and breast cancer resistance proteins (BCRPs), have garnered attention due to 
their impact on drug distribution across the BBB. These transporters limit brain 
distribution of many drugs, even those that are lipophilic and should, in theory, diffuse 
passively. 
 

2.3.2.3. Cerebral Blood Flow and Effective Capillary Surface Area 
For drugs with high BBB permeability, cerebral blood flow becomes the rate-limiting factor for 
brain entry. Blood flow can be influenced by the linear flow rate or the number of perfused 
capillaries. Increased blood flow velocity enhances the influx of highly permeable drugs across 
the BBB, while the transport of less permeable drugs remains largely unchanged. Variations in 
capillary perfusion (“effective perfusion”) can affect BBB transport for all drugs. 

 

2.3.2.4. Intra-CNS Distribution and Brain Tissue Binding 
Intra-CNS distribution refers to all processes occurring after a drug crosses the brain barriers. 
It involves several mechanisms: 

● CSF Turnover and ECF Bulk Flow. Cerebrospinal fluid (CSF) is produced by the choroid 
plexus and reabsorbed into the bloodstream through the arachnoid villi. CSF turnover 
can lower drug concentrations in the CSF. The slower the drug permeation into the 
CSF, the greater the impact of CSF turnover on CSF drug levels relative to plasma 
concentrations. Since CSF turnover is slower than trans-capillary transport, 
extracellular fluid (ECF) concentrations in the brain equilibrate more quickly with 
plasma concentrations than with CSF. Moreover, ECF bulk flow into the CSF can 
counteract molecular diffusion from CSF back into brain tissue. 

● Extra-Intracellular Exchange and Brain Tissue Binding. Drugs may preferentially 
distribute between extracellular and intracellular spaces and may bind non-specifically 
to brain tissue components. Drug distribution between these compartments occurs 
through both simple diffusion and active transport. The distribution of drugs is 
important for determining the concentration of unbound drug at the target site, which 
is crucial for optimizing therapeutic effects. 

● Drug Metabolism. Metabolic activity within the CNS also affects intra-CNS distribution. 
Enzymes in the BBB, BCSFB, and ependymal cells may act as barriers, metabolizing 
drugs before they enter the brain. Additionally, the brain vasculature contains 
cytochrome P450s, monooxygenases, and conjugating enzymes such as UDP-
glucuronosyltransferase and glutathione S-transferase. The choroid plexus is 
particularly active metabolically; its enzymatic profile resembles that of the liver and 
can significantly influence CNS drug disposition. 
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2.3.3. Drug target engagement 
Binding kinetic (BK) models are used to determine how and where drugs engage their targets 
in the brain. In the QSPainRelief project, as an initial focus, we modelled opioid binding to mu-
opioid receptors (MOR), using drug concentrations in the extracellular fluid (ECF) and 
subarachnoid space (SAS) derived from PBPK outputs51. Combining these with receptor 
affinities and MOR expression levels across brain regions, we calculated the regional fraction 
of occupied receptors. 

For dopaminergic, serotonergic, noradrenergic and muscarinic receptors, a mathematical 
generic synapse model was used52. It was calibrated through fast-cyclic voltammetry 
(preclinical data) and constrained by human PET imaging data obtained using selective 
postsynaptic probes. Drug effects were modelled as competition with endogenous 
neurotransmitters (e.g., dopamine, serotonin), based on brain drug concentrations and 
receptor affinities. 

To guide the development of combination therapies for chronic pain, a deeper understanding 
of the molecular mechanisms underlying drug synergy is essential. In particular, receptor 
heteromerization – the ability of two G protein-coupled receptors (GPCRs) to form functional 
heterodimers – has been proposed as a key biological mechanism that could explain drug 
cooperativity in pain pathways53-55. 

In this context, the QSPainRelief project explored heteromerization as a mechanistic basis for 
drug interaction. Two complementary strategies were employed: 

● A mathematical modelling approach, where formal frameworks for binding and 
functional cooperativity between ligands acting on heterodimeric receptors were 
developed, under both equilibrium and non-equilibrium conditions56, 57. 
 

● A structural modelling approach, using coarse-grained molecular dynamics simulations 
to investigate the self-assembly of mu-, delta-, and kappa-opioid receptors with the 
cannabinoid CB1 receptor (submitted manuscript). 

These approaches help capture drug interactions at the molecular level, integrating receptor 
dynamics into larger pharmacological and systems models. Their inclusion within the QSP 
platforms strengthens the capacity to predict when and how drug combinations will exhibit 
synergy or antagonism. Ultimately, combining such mechanistic insights with in vitro and in 
vivo data offers a path toward more precise, safer, and effective multimodal analgesic 
strategies. 

 

2.3.4. Integration into QSP neural circuit models 
Once drug–receptor interactions are established, their effects can be integrated into 
biophysical neural network models that simulate neuronal activity as shown in Figure 3 58. 
Drug-induced receptor activation changes lead to ion-channel conductance variations via a 
transfer function: 

gn = g * ParamYZ * (1 +/- NYA) 
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where gn is the new conductance for channel Z, g is the baseline conductance, NYA is the 
normalized change in activation of receptor Y, using addition or subtraction depending on 
whether Y increases or decreases the conductance of channel Z. NYA is based on control 
activation level XYC and activation with drug XYA so that NYA = (XYA - XYC)/XYC. ParamYZ 
optimizes the correlation of platform output with clinical outcomes. The platform output 
captures variation of clinical experiments related to neurological outcomes/activity (Figure 
3). 

The platform is based on Hodgkin-Huxley-type neuron models, modulated by 
neurotransmitter systems with accurate anatomical and receptor localization. It currently 
includes over 30 molecular targets across key CNS pathways. The models are humanized 
using data from PET, MRI, BOLD imaging, genomic datasets, and postmortem studies in both 
healthy and disease-specific populations. The platform is validated by simulating historical 
clinical trials and comparing outputs to reported outcomes. 

Figure 3. (Step 1) Determine target engagement of drugs. (Step 2) Incorporate effects of 
targets on neuronal mechanisms such as conductance on ion channels. (Step 3) Simulate 
drug effects on system of neurons to determine resulting neuronal network behaviour. (Step 
4) Simulate known drug clinical outcomes, modifying the effect size set in step 2 to maximize 
the correlation (R2) between model readout (x-axis) and clinical outcomes (y-axis). 

 

2.3.4.1. Functional circuits for pain, sedation, cognition, and abuse liability 
To simulate pain relief, neural activity was modelled in the dorsal root ganglion, dorsal horn, 
rostral ventromedial medulla, periaqueductal grey, thalamus, and primary somatosensory 
cortex, linking it to changes in pain intensity59. 
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For sedation and cognitive impairment, circuits in the prefrontal cortex have been simulated, 
striatum, globus pallidus externa/interna, subthalamic nucleus, and thalamus60, 61. Cognitive 
effects are linked to accuracy in a 2-back working memory task, while sedation effects are 
aligned with reported somnolence levels from clinical data39. 

To assess drug abuse liability, dopamine neurons and GABAergic interneurons were modelled 
in the ventral tegmental area, and linked outputs to “drug liking” scores62. 

 

2.3.5. Platform calibration and validation 
To ensure reliability, the platform must be calibrated and validated against clinical data. 
Calibration involves adjusting model parameters to match observed outcomes from hundreds 
of published clinical trials on drug combinations for chronic pain. These trials provided real-
world evidence on both therapeutic effects and self-reported adverse events. 

Validation is a prerequisite for acceptance of any modelling platform in a clinical setting. The 
platform was validated by comparing its predictions for combination therapies with 
independent published trial results not used during calibration. Additional validation came 
from evoked pain studies in healthy subjects and clinical trials in post-operative pain patients, 
where predicted analgesic and side-effect profiles matched observed outcomes. 

 

2.3.5.1. Predicting the effects of drug combinations 
As co-medications with morphine show negligible impact on brain drug concentrations, 
researchers simulated drug combinations by independently combining their target effects63. 
For dose-sparing analyses, we modelled five morphine dosing regimens (0, 15, 30, 45 and 60 
mg/day) combined with three regimens of over 30 augmentation drugs, across the four 
indications. This resulted in simulations of 450+ combinations. 

For example, combining morphine 30 mg/day (10 mg dose taken 3 times per day) with 
duloxetine 40 mg/day (taken once per day), the PK simulations predict steady-state 
concentrations after four weeks. From these concentrations, we estimate morphine’s binding 
to mu-opioid receptors in the extracellular fluid, as well as duloxetine’s inhibition of serotonin 
and norepinephrine reuptake, leading to increased synaptic levels of both neurotransmitters. 
These changes in neurotransmitter availability modify receptor activation, reflecting the 
combined action of endogenous ligands and drug binding, which in turn alters the 
conductance of specific ion channels across all four models. The resulting modifications in 
neuronal firing are then simulated and linked to clinical outcomes. 

 

2.3.5.2. Assessing clinical relevance through patient-centred outcomes 
and mechanistic insight 

Beyond simulating pharmacodynamic outcomes, QSPainRelief aims to anchor its predictions 
in meaningful, patient-centred measures. For this purpose, we employed a Clinical Utility 
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Index (CUI) that balances efficacy and tolerability, aligning simulation outputs with what 
matters most to patients and clinicians. 

Benefit-risk assessment tools are tools that weigh the benefits (e.g. desired treatment effect) 
against the risks (e.g. side effects). They are used by regulatory agencies in the approval 
process of drugs, where at the very least the benefit must outweigh the risk. In addition, a 
comparison is also made against already available treatments. Benefit-risk assessment tools 
can be classified under a quantitative and qualitative framework. A qualitative framework is a 
descriptive analysis of the benefits and risks. The FDA for example uses a descriptive 
qualitative framework in the approval process (see Figure 4). 

 
Figure 4. FDA’s Benefit-Risk Framework for New Drug Review. U.S. Food and Drug 
Administration. 

A quantitative framework gives a numerical value to the outcomes. An example of a 
quantitative framework is the CUI model that quantitatively weighs the benefits against the 
risks, as depicted in Figure 564. In short, individual outcomes –such as endpoint measures over 
time from different doses (exposure–response relationships) and drugs – are weighted (based 
on their clinical importance), and if applicable, a transformation function is applied (e.g., 
exponential or cut-off). This leads to a clinical utility score for the different outcome measures. 
These scores can be used to recommend dosing regimens that provide the best 
efficacy/tolerability balance, aligning simulation outputs with what matters most to patients 
and clinicians. 
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Figure 5. The CUI formula. 

Major advantages of a CUI model include transparency and consistency, the ability to 
interpolate/extrapolate across doses, easy application of alternative weights based on 
clinician input, patient preference or patient stratification (e.g., sex, age). It can be easily 
integrated with model-predicted outcomes from PKPD and QSP models. 

Within the QSPainRelief platform, we integrated the QSP model predicting analgesic 
responses and side effects of combination treatments for chronic pain into a CUI model to 
predict which drug combinations are expected to benefit the patients the most. 

Furthermore, we developed a proof-of-concept application in which CUI weights are elicited 
internally from clinician inputs. Besides clinician input, regulatory agencies encourage to 
include patient preferences. 

Through an online patient questionnaire, we obtain data on preferences from patients with 
chronic pain and use this information to inform the selection of combination treatments. The 
questionnaire examines multiple stratifications such as pain type and severity, current side 
effect burden, sex and ethnicity which will help us develop the CUI model by taking patient 
characteristics into account, which eventually could lead to better personalized pain 
treatments. These patient preferences will be integrated into the weights together with those 
from the clinicians. 

 

2.4. Future challenges for the use of QSP for analgesic drug development 
Despite its promise, the application of QSP in chronic pain research faces some challenges. 
One of the most fundamental is the limited understanding of the complex and dynamic 
physiological processes that contribute to the chronicity of pain. Mechanisms such as 
peripheral and central sensitization, altered descending inhibition or facilitation, or ectopic 
neuronal discharges remain only partially characterized, particularly in human subjects. This 
knowledge gap limits the ability to fully represent pathological states within current QSP 
models. 

Another barrier is the poor translational knowledge between animal models and human pain 
conditions. While QSP provides a structured framework to integrate human data, most 
preclinical studies still rely on simplified or acute models that do not capture the full spectrum 
of chronic pain phenotypes. As a result, current neural circuit models embedded in platforms 
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such as QSPainRelief require further refinement to simulate clinically relevant 
pathophysiological states. 

Future developments in QSPainRelief will require the incorporation of more detailed, 
condition-specific mechanisms into the existing neural network models. For instance, 
representing maladaptive neuroplasticity, chronic inflammation, or neuropathic-like features, 
such as spontaneous firing or loss of inhibitory tone, will be essential for predicting drug 
effects in specific patient subpopulations. Integration of omics data, patient stratification 
biomarkers, and longitudinal clinical outcomes could further enhance the model’s predictive 
value and personalization capacity. 

Ultimately, advancing QSP for analgesic development will depend on deeper biological 
insights into pain chronification and more robust, human-relevant datasets to support model 
calibration and validation. 

  



H2020 research and innovation programme (848068)
   

 

 
D9.10 - White paper on new effective combinational treatment of chronic pain in individual patients 
 
  Page 21 of 26 

3. Conclusion 
Chronic pain is a significant clinical and societal burden, often resistant to standard 
pharmacological treatments. In this complex landscape, Quantitative Systems Pharmacology 
(QSP) may constitute a promising approach because it can provide a mechanistic, multi-scale 
framework to understand and predict drug effects, from molecular interactions to patient-
level outcomes. 

The QSPainRelief project illustrates the potential of this approach to explore the efficacy and 
safety of combination treatments for chronic pain, by integrating PBPK modelling, target 
binding kinetics, and neural circuit simulations. The QSPainRelief platform could allow for 
rational drug pairing, optimization of dose regimens, and a significant reduction in the reliance 
on trial-and-error strategies in both preclinical and clinical settings. Critically, QSPainRelief 
supports a more personalized approach to treatment by accounting for individual variability 
in age, sex, receptor expression, and comorbidities. 

 

Key takeaways from this work include: 

• The integration of pharmacokinetics and pharmacodynamics across scales enables 
precise prediction of CNS target engagement and clinical outcomes. 
 

• QSP models support the design of opioid-sparing combinations, addressing both 
efficacy and safety challenges in chronic pain therapy. 
 

• The use of clinical utility indices (CUI) provides a structured benefit-risk evaluation 
tailored to patient-centric outcomes. 

 

Looking ahead, QSPainRelief lays the groundwork for the broader adoption of QSP in drug 
development and clinical practice. Future research will focus on expanding the platform to 
incorporate identified pathophysiological mechanisms contributing to chronic pain, patient-
reported outcomes, refine stratification methods, and strengthen model validation across 
diverse populations and pain conditions. By bridging mechanistic insights and clinical needs, 
QSP represents a key enabler for more effective, safer, and personalized chronic pain 
management. 
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