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Abstract
Plasma pharmacokinetic (PK) profiles often do not resemble the PK within the central nervous system (CNS) because of 
blood–brain-border (BBB) processes, like active efflux by P-glycoprotein (P-gp). Methods to predict CNS-PK are therefore 
desired. Here we investigate whether in vitro apparent permeability  (Papp) and corrected efflux ratio  (ERc) extracted from 
literature can be repurposed as input for the LeiCNS-PK3.4 physiologically-based PK model to confidently predict rat 
brain extracellular fluid (ECF) PK of P-gp substrates. Literature values of in vitro Caco-2, LLC-PK1-mdr1a/MDR1, and 
MDCKII-MDR1 cell line transport data were used to calculate P-gp efflux clearance  (CLPgp). Subsequently,  CLPgp was scaled 
from in vitro to in vivo through a relative expression factor (REF) based on P-gp expression differences. BrainECF PK was 
predicted well (within twofold error of the observed data) for 2 out of 4 P-gp substrates after short infusions and 3 out of 4 
P-gp substrates after continuous infusions. Variability of in vitro parameters impacted both predicted rate and extent of drug 
distribution, reducing model applicability. Notably, use of transport data and in vitro P-gp expression obtained from a single 
study did not guarantee an accurate prediction; it often resulted in worse predictions than when using in vitro expression 
values reported by other labs. Overall, LeiCNS-PK3.4 shows promise in predicting brainECF PK, but this study highlights 
that the in vitro to in vivo translation is not yet robust. We conclude that more information is needed about context and drug 
dependency of in vitro data for robust brainECF PK predictions.
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Introduction

Plasma pharmacokinetic (PK) profiles often do not resemble 
the PK within the central nervous system (CNS), which is 
mainly caused by the blood–brain-border (BBB) [1]. For 
compounds that exert their function within the central nerv-
ous system (CNS), the BBB poses a challenge, leading to 
high attrition rates observed for novel CNS drugs [2, 3]. 

Especially the efflux transporter P-glycoprotein (P-gp) plays 
a crucial role, as it limits a wide range of drugs in adequately 
accessing the brain [4, 5]. The complex interplay of pas-
sive diffusion, active transporters and intra-brain distribu-
tion makes PK profiles in the brain difficult to predict. A 
mechanistic and integrated understanding of the processes 
governing BBB transport is crucial for successful predic-
tions of brain PK [6].

Information on the unbound drug PK in the brain extra-
cellular fluid (brainECF), the target site of most CNS drugs, 
is required to understand the relationship between drug 
exposure and its effect, and to subsequently optimize ther-
apy. The gold standard to measure this is through microdi-
alysis that can be applied in animal studies, but is restricted 
in its use in humans due to ethical considerations [7]. Micro-
dialysis studies allow us to improve mechanistic understand-
ing of BBB transport, but animal studies are expensive and 
extensive (i.e., they are time-consuming and require techni-
cal expertise). Also, the use of animals should be restricted 
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where possible. Alternatively, in vitro models and assays 
hold promise for the prediction of drug penetration into the 
brainECF in vivo [8]. An example is the transwell perme-
ability assay, used for the study of drug permeability across 
a monolayer of cells expressing transporters like P-gp [9, 
10]. Mechanistic information on the interaction of a drug 
with a membrane and transporters can be derived from these 
assays, for prediction of BBB transport in vivo.

Multiple approaches using in vitro data to predict brain 
distribution of drugs have been published, including for 
P-gp substrates [11]. Most are focussed on the prediction 
of the extent of BBB transport, i.e. on  Kpuu,brain, which is 
the ratio of unbound drug concentration in the brain and 
that in plasma at steady state [12]. Summerfield et al. and 
Langthaler et al. showed, for example, how transport data 
from MDCKI/II cell lines could be used to predict  Kpuu,brain 
in vivo [13, 14]. Similarly, Uchida et al. and Nicolaï et al. 
utilized LLC-PK1 cell line data to predict  Kpuu,brain in mice, 
rats, and humans within threefold and twofold error, respec-
tively, compared to observed  Kpuu.brain [15, 16]. Measures 
of  Kpuu,brain give important insights into the extent of drug 
distribution at steady state (SS), but neglect the importance 
of the rate of distribution and the processes before SS is 
reached [6, 17]. Since the receptor or target of interest is 
exposed to fluctuating concentrations of the drug over time 
after single doses or short infusions, the static, SS-meas-
ure of  Kpuu,brain is not ideal to predict pharmacodynamic 
effect(s). In addition, the drug might have to compete with 
endogenous ligands at its target site, the success of which 
might change over the course of the treatment based on 
changing drug concentrations. Understanding and being 
able to predict a complete, temporal unbound PK profile is 
therefore crucial to relate drug doses to their ultimate effect.

For prediction of both the rate and extent of distribution, 
physiologically based pharmacokinetic (PBPK) models 
can be applied. They allow for predictions of PK profiles 
by leveraging physiological knowledge, drug-specific 
properties and mechanistic information from in  vitro 
studies for predictions of drug PK in vivo [18]. Successful 
development of a generic CNS PBPK model that explicitly 
takes into account P-gp mediated clearance  (CLPgp) at the 
BBB (and as such predicts both rate and extent of transport) 
is of significant interest. Such a model would have great 
potential for clinical applications but also for theoretical 
investigation, allowing what-if studies that explore P-gp 
activity specifically (e.g., to explore the impact of disease 
on P-gp functionality). Some PBPK models that use in vitro 
data to predict brain PK of P-gp substrates have already 
been developed [19–26]. Though informative, these models 
have a number of shortcomings: they (1) commonly rely on 
the introduction of empirical scaling factors to accurately 
predict observed data [19, 23, 24], (2) estimate additional 
transporters aside from P-gp which makes it hard to gauge 

the success of modelling P-gp [21, 26], and (3) often lay 
the focus on cerebrospinal fluid (CSF) instead of the more 
relevant brainECF [19, 24]. Moreover, these models have 
been validated with a limited number of drugs (no more 
than three drugs with temporal PK predictions, more often a 
single drug) [20–26], questioning their general applicability.

A large amount of literature is available on in  vitro 
transport data. It makes sense from a 3R (Reduce, Recy-
cle, Reuse) standpoint [27] to repurpose this data for PBPK 
models instead of setting up a new experimental study. An 
important factor that has not been investigated sufficiently 
in the context of CNS PBPK models is the variable nature 
of in vitro data [28, 29] that can impact the accuracy and 
robustness of model predictions [30, 31]. Understanding 
this impact is crucial, especially if an investigation relies 
on data retrieved from literature as starting point for a com-
putational study. Therefore, it is still unclear to what extent 
the use of in vitro transport data as input in a CNS-PBPK 
model allows for reliable and generic predictions of the rate 
and extent of distribution into the brainECF, especially for 
P-gp substrates. The aim of the current study is to determine 
whether in vitro data extracted from literature can be repur-
posed as input in a CNS-PBPK model to confidently predict 
rat brainECF PK for multiple P-gp substrates. Specifically, 
we want to establish how variability in transport data from 
different sources (for the same drug) influences prediction 
outcomes and model robustness. Importantly, we did not 
include any empirically derived scaling factors in the meth-
odology, and instead we use a purely bottom-up approach 
for the prediction of brainECF PK.

Materials & methods

Structural overview of the developed CNS PBPK 
model (LeiCNS‑PK3.4)

Predictions of rat brain ECF PK were made by building 
on the previously published LeiCNS-PK3.0 PBPK model, 
which is able to accurately predict unbound CNS PK in mul-
tiple CNS compartments in rats, mice and humans [32–34]. 
This model leverages drug physicochemical properties, 
physiological properties of the CNS, and systemic plasma 
PK to predict CNS disposition. All changes that we made in 
the model structure concerned the movement of drugs across 
the BBB into or out of the brainECF. Though disposition to 
the cerebral spinal fluid (CSF) is not evaluated in the current 
study, CSF compartments and distribution are still present 
in the model structure as previously described [32]. Though 
P-gp is also present at the blood-CSF-border (BCSFB) [35], 
this was not taken into consideration since the focus of the 
current study is on BBB transport.
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Some changes were made to the LeiCNS-PK3.0 model 
to obtain the new LeiCNS-PK3.4 model (Fig. 1). First, in 
the LeiCNS-PK3.0 model, transcellular and paracellular 
diffusion across the BBB are modelled as separate pro-
cesses. In our new model these are grouped together into 
a single CL term for passive diffusion  (CLpassive). This is 
a step back, but in this case it was needed since the aim of 
the current study was to evaluate the reliability of in vitro 
derived data for predicting BBB disposition, and in reported 
in vitro data there is no distinction between paracellular and 
transcellular passive transport. Additionally, in this way the 
LeiCNS-PK3.4 model can be compared directly with previ-
ously published PBPK models that apply similar methods 
for passive diffusion across the BBB [20–23]. Then, as P-gp 
mediated clearance  (CLPgp) is explicitly accounted for in 
LeiCNS-PK3.4, the asymmetry factor (AF) was not required 
in the current model (i.e., for P-gp substrates) since the AF 
accounts for processes that drive  Kpuu,brain away from unity, 
which is mainly driven by P-gp efflux for P-gp substrates. 
Thus, LeiCNS-PK3.4 can be informed completely by in vitro 
derived information to describe drug distribution across the 
BBB.

Determining drug clearances across the BBB

All drug movement across the BBB in vivo was predicted 
by using parameters from transwell permeability assays, as 
schematically illustrated in Fig. 2. In short, a drug is dosed 
at either the apical (A) or basolateral (B) side of a mon-
olayer transfected with P-gp. The rate of appearance in the 
other chamber is subsequently measured, from which the 
apparent permeability  (Papp) of a drug from each side of the 
monolayer to the other can be determined [9, 10]. Coadmin-
istration of a P-gp inhibitor or using a cell line that is not 
transfected with P-gp allows for the measurement of perme-
ability without P-gp mediated CL  (Papp[I]). The efflux ratio 
(ER), which is the ratio of the basolateral to apical  (Papp,B:A) 
and apical to basolateral  (Papp,A:B) permeability, highlights 
the degree of efflux mediated by P-gp. To account for the 
effect of other transporters that might influence the disposi-
tion across the membrane, the ER can be divided by the ER 
obtained when P-gp is inhibited (ER[I]). By doing so, the 
corrected efflux ratio  (ERc) is calculated [10, 36], which 
represents the effect that solely P-gp has on asymmetric 
transport across the monolayer (see Fig. 2).

Fig. 1  Schematic of the LeiCNS-PK3.4 model structure. The LeiCNS 
model contains multiple CNS compartments, including intracellular 
fluid and cerebrospinal fluid compartments. The focus of the current 
study is on the distribution of drug from the brain microvasculature 
to the brain extracellular fluid across the blood–brain-border, through 
the passive clearance (blue bold arrows) and P-gp mediated clearance 
 (CLPgp, red bold arrow). All aspects that are unchanged compared 
to LeiCNS-PK3.0 and that are not discussed in this study are shown 

with reduced opacity. BBB Blood–brain-border, BCSFB Blood-cere-
brospinal fluid-border, CLBC,in Clearance into brain cell membranes, 
CLBC,out Clearance out of brain cell membranes, CLcen-per1/2 Intercom-
partmental clearance, CLe Systemic clearance, CLpassive Passive clear-
ance, CLPgp P-gp mediated clearance, ECF Extracellular fluid, ICF 
Intracellular fluid, P1 Peripheral compartment 1, P2 Peripheral com-
partment 2, QCBF cerebral blood flow, QCSF cerebral spinal fluid flow, 
QECF ECF bulk flow (Color figure online)
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Passive diffusion of drugs across the BBB in  vivo 
 (CLpassive, Fig. 1) was calculated as [20–23]:

where  Papp,A:B[I] is the apparent permeability (×  10–6 cm/s) 
from the apical to the basolateral direction with inhibition 
of P-gp (or derived from a cell line not transfected with 
P-gp) and  SABBB is the surface area of the BBB in rats (155 
 cm2 [32]). The expression was multiplied by 60 to express 
 CLpassive in mL/min. The P-gp mediated clearance  (CLPgp) 
was determined through the method adapted from Kalvass 
et al. [37]:

where  ERc is the corrected efflux ratio in vitro (see Fig. 2) 
and  SABBB,trans is the surface area of the rat BBB available for 
transcellular processes  (SABBB,trans = 0.998 *  SABBB = 154.69 
 cm2 [32]), since P-gp is embedded in the apical membrane 
of endothelial cells [38]. The multiplication by 60 is done to 
express  CLPgp in mL/min.

Additionally, to account for differences in expression and 
activity of P-gp between in vitro and in vivo, we applied a 
proteomics-informed relative expression factor (REF) [15, 
20, 39]:

where the P-gp protein expression in vivo and in vitro is 
given in fmol/µg total protein. Of note is that use of the 
REF assumes the existence of a linear correlation between 

(1)CLpassive = Papp,A∶B[I] ∗ SABBB ∗ 60

(2)
CLPgp = (ERc − 1) ∗ 2Papp,A∶B[I] ∗ SABBB,trans ∗ REF ∗ 60

(3)REF =

Pgp expression in vivo

Pgp expression in vitro

expression of P-gp and its activity [40, 41], and that its 
intrinsic activity (i.e., the activity of one entity of P-gp) is 
system-independent.

Equations (1) and (2) were subsequently introduced into 
LeiCNS-PK3.4. Changes in the amount of drug in the model 
compartments over time were described through ordinary 
differential equations. A change in unbound drug in the 
brainECF compartment of the final model was defined as:

where  VECF is the volume of the brainECF and  CMV,  CECF, 
and  CBC are drug concentrations in the brain microvascu-
lature, brainECF, and brain cell membranes, respectively. 
fup is the unbound fraction of drug in plasma, and  QECF is 
the bulk flow of brainECF to the lateral ventricles.  CLBC,in 
and  CLBC,out are clearances that describe drug partitioning 
into and out of brain cell membranes, and were calculated 
as described previously [32].  PHFECF is the fraction of drug 
that is unionized and available for partitioning into the brain 
cell membranes from the ECF [32]. All concentrations and 
clearances are expressed in ng/mL and mL/min, respectively.

In vivo microdialysis data for model evaluation

The developed model was evaluated using in vivo unbound 
brainECF PK profiles obtained through microdialysis in 
rats. Predictions of passive diffusion across the BBB were 

(4)
VECF

dCECF

dt
= CLpassive ∗ fup ∗ CMV −

(

CLPgp + CLpassive

)

∗ CECF − QECF ∗ CECF − CLBC,in ∗ CECF

∗ PHFECF + CLBC,out ∗ CBC

Fig. 2  Schematic overview of in  vitro transwell assays and related 
membrane transport parameters. A drug is dosed at either the api-
cal (A) or basolateral (B) side of a monolayer transfected with P-gp. 
The rate of appearance in the other chamber is subsequently meas-
ured, from which the apparent permeability  (Papp) of a drug from one 

side of the monolayer to the other can be determined (displayed on 
the left). Coadministration of an inhibitor, or using a cell line that 
does not express P-gp, allows for measurements of  Papp without P-gp 
 (Papp[I]), which is displayed on the right
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evaluated using the plasma and brainECF PK data on the 
passively diffusing drugs acetaminophen, raclopride, and 
paliperidone (which is a P-gp substrate) co-administrated 
with tariquidar (a P-gp inhibitor). All in vivo data for the 
passively diffusing drugs were published previously and 
available in-house [42]. The prediction of P-gp functionality 
was evaluated with the P-gp substrates morphine, quinidine, 
risperidone, paliperidone (without tariquidar co-adminis-
tration), and verapamil. A distinction was made between 
microdialysis data obtained from (ultra) short infusion of the 
drug (intravenous [I.V.] and subcutaneous [S.C.]) and data 
from a loading dose and maintenance constant rate infusion. 
The short infusion in vivo data were reported previously 
and available in-house for morphine [43], quinidine [44], 
and paliperidone [45]. For risperidone, data were extracted 
from literature [46]. The risperidone brainECF data were 
corrected for microdialysis lag time. Morphine plasma PK 
data concerned total plasma concentrations and were cor-
rected for plasma protein binding in the model structure 
(fup in Eq. (4)). Continuous infusion data were available for 
paliperidone, quinidine, risperidone and verapamil and were 
extracted from the study by Nagaya et al. [47]. An overview 
of the different drugs, doses, and references are shown in 
Table 1.

Overview of input parameters

Input parameters for the CNS PBPK model can be divided 
into four types: drug physicochemical parameters, physio-
logical parameters, plasma pharmacokinetic parameters and 
drug transport parameters. Drug physicochemical properties 
and rat CNS physiological properties are listed in the Sup-
plementary Tables 1 and 2. The plasma PK profile of a drug 
served as an input function for the model to predict distribu-
tion into the CNS and is described with an empirical popula-
tion PK model. All PK models for the short infusion data 

were reported previously [32, 42, 46]. The risperidone PK 
parameters were adapted so that all parameters are expressed 
in millilitres and describe a typical rat weighing 0.25 kg. The 
continuous infusion plasma PK data were not described well 
using the previously reported PK models. As this is a pre-
requisite to evaluate the accuracy of the P-gp mediated CL, 
the PK models were re-estimated to fit a one compartment 
PK model using Monolix (version 2023R1, Lixoft, Antony, 
France) [49]. The PK parameters used to describe systemic 
plasma concentrations of the drugs are shown in Table 2.

The transport parameters of each drug (i.e.,  Papp,A:B, 
 Papp,B:A,  Papp,A:B[I],  Papp,B:A[I], ER, and  ERc), and P-gp 
expression in vitro and in vivo were retrieved from previ-
ously published literature (Table 3). Values were retrieved 
from multiple sources using multiple cell lines, where pos-
sible, to assess the influence of different experimental condi-
tions and variability in reported parameter values on model 
functionality.

Model evaluation

Model evaluation was done by calculating prediction errors 
(PEs) [20, 45] as:

where  Ypred,j is the model predicted typical concentration 
at time point j and  Yobs,i,j is the observed concentration 
for the ith individual at time point j. An optimal predic-
tion would render a median PE of 0, but predictions were 
deemed accurate when the median PE fell within twofold 
error (−0.67 ≤ PE ≤ 0.67) compared to the observed data.

PE =

Ypred,j − Yobs,i,j

(Ypred,j + Yobs,i,j)∕2

Table 1  Summary of the dosing 
regimens

I.V Intravenous, S.C subcutaneous, N/A not available for the dosage form, (M) maintenance dose, (L) load-
ing dose. *Body weight of a typical rat was set to 0.25 kg in the predictions

Drug Admin-
istration 
route

Total dose
(mg/kg body  weight*)

Infusion 
time (min-
utes)

References

Short infusion Acetaminophen I.V 15 10 [48]
Raclopride I.V 0.56 10 [42]
Morphine I.V 40 10 [43]
Paliperidone I.V 0.5 20 [45]
Quinidine I.V 20 10 [44]
Risperidone S.C 3 N/A [46]

Continuous infusion Paliperidone I.V 0.8 (L)/4 (M) 240 [47]
Quinidine I.V 8.0 (L)/20 (M) 240 [47]
Risperidone I.V 0.7 (L)/4 (M) 240 [47]
Verapamil I.V 0.9 (L)/4 (M) 240 [47]
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Software

Plasma PK parameters for the continuous infusion datasets 
were estimated using Monolix (version 2023R1, Lixoft, 
Antony, France) [49]. Literature data reported in plots was 
extracted using WebPlotDigitizer version 4.6 [64]. Develop-
ment, execution of the LeiCNS-PK3.4 model and subsequent 
visualizations of the results were all done using RStudio 
version 4.3.0 [65]. The model was simulated using the freely 
available R package rxode2 version 2.0.13, while data visu-
alization was done using the R package ggplot2.

Results

Reported apparent permeability of P‑gp substrates 
in literature

In total, 34 sets of in vitro passive permeability  (Papp,A:B[I]) 
and corrected efflux ratio  (ERc) for the drugs were retrieved 
from previously published literature. Cell lines used for the 
transport assays were Caco-2, MDCKII transfected with 
human P-gp (MDR1), and LLC-PK1 transfected with either 
rodent (mdr1a) or human (MDR1) P-gp. For the P-gp sub-
strates,  Papp values were available for quinidine and risperi-
done from all cell lines, while information on morphine, 
paliperidone and verapamil permeability was missing for 
either LLC-PK1 (morphine) or Caco-2 (paliperidone and 
verapamil).

In vitro transport values extracted from literature showed 
varying degrees of variability of  Papp,A:B[I] and  ERc for the 
P-gp substrates (Fig. 3 and Table 3). Similar  Papp,A:B[I] and 
 ERc between different sources and cell lines was observed 
for morphine (mean  Papp,A:B[I] ± SD = 2.7 ± 1.2 ×  10–6 cm/s, 
mean  ERc ± SD = 1.5 ± 0.2) and paliperidone (mean 

 Papp,A:B[I ]  ± SD = 14.9  ± 1.4  ×  10–6  cm/s ,  mean 
 ERc ± SD = 5.6 ± 2.0). However, the  Papp,A:B[I] of quini-
dine, risperidone and verapamil showed a higher degree of 
variability, with risperidone passive permeability ranging 
approximately 62-fold between sources. This variation was 
not distinctly related to a specific cell line, and large variabil-
ity could be observed within a single cell line. For example, 
risperidone  Papp,A:B[I] values measured in LLC-PK1 cells 
ranged from 15.8 ×  10–6 to 96.3 ×  10–6 cm/s (mean ± SD 
of 41.6 ± 33.8 ×  10–6 cm/s). For quinidine,  Papp,A:B[I] was 
similar for Caco-2 and LLC-PK1, except for the value 
reported by Nagaya et al. in LLC-PK1 cells (mean ± SD 
of 55.9 ± 2.4 ×  10–6 cm/s without Nagaya et al.  Papp,A:B[I]). 
Permeability of quinidine in MDCKII cells was lower than 
in Caco-2 and LLC-PK1 and also varied, with the values 
reported by Bicker et al. and Feng et al. aligning with a mean 
of 8.76 ×  10–6 cm/s, whereas the  Papp,A:B[I] from Troutman 
et al. was higher (36.8 ×  10–6 cm/s).

Though the risperidone and verapamil  Papp,A:B[I] val-
ues vary substantially, the  ERc values were more consist-
ent between sources, except for the  ERc reported by Uchida 
et al. which were higher than the other values for both drugs. 
Like the  Papp,A:B[I], the quinidine  ERc showed great vari-
ability (mean  ERc ± SD = 10.4 ± 9.0), with the reported  ERc 
varying up to 22-fold between Caco-2 and LLC-PK1-mdr1a 
based studies.

P‑gp expression is constant in vivo but variable 
in vitro

In vivo P-gp expression in rat brain microvascular endothe-
lial cells was constant between different sources, with a 
mean of 19.4  fmol/µg total protein (see Supplementary 
Table 3). In contrast, in vitro expression of P-gp in the cell 
lines showed a high degree of variability (see Supplementary 

Table 2  Pharmacokinetic parameters of the validation drugs in rats

(1): From Saleh et al. (2021) [32]. (2) From Yamamoto et al (2017)42. (3): From Cremers et al. (2012) [46], recalculated for a rat weighing 
0.25 kg. (4): Estimated

Drug CLcen
(mL/min)

Qcen-per1
(mL/min)

Qcen-per2
(mL/min)

Vcen
(mL)

Vper1
(mL)

Vper2
(mL)

Ka
(1/min)

Short infusion Acetaminophen (1) 4.7 11.2 31.4 50.7 27892 162.5 N/A
Raclopride (1) 47.7 16.5 56.8 83 603 457.5 N/A
Morphine (2) 22.6 30.8 7.2 152 530 1200 N/A
Paliperidone (1) 219.5 6766 0 25 32,981 0 N/A
Quinidine (1) 178.3 238 754 184 7335 5063 N/A
Risperidone (3) 77 0 0 5250 0 0 0.03

Continuous infusion Paliperidone (4) 29.2 0 0 2053 0 0 N/A
Quinidine (4) 25 0 0 7314 0 0 N/A
Risperidone (4) 37 0 0 3799 0 0 N/A
Verapamil (4) 72.3 0 0 11,700 0 0 N/A
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Table 3). Table 4 shows the highest and lowest reported P-gp 
protein expression in each cell line, as well as the average of 
these values. Only one P-gp expression level was reported 
for the LLC-PK1-MDR1 cell line, and this was categorized 
under the lowest expression due to its proximity to the lowest 
value of the LLC-PK1-mdr1a cell line. This is however an 
arbitrary distinction.

BrainECF PK is predicted well for passively diffusing 
drugs

Predictions of brainECF PK were first evaluated for 
drugs undergoing passive diffusion, to ensure adequate 
model functionality before including  CLPgp. BrainECF 
PK was predicted for three drugs that diffuse passively 
across the BBB, namely acetaminophen, raclopride and, 
in case of P-gp inhibition by tariquidar, paliperidone 

Table 3  Apparent passive 
permeability  Papp,A:B[I] and 
corrected efflux ratio  (ERc) of 
P-gp substrates derived from 
literature

For  Papp,A:B[I], the P-gp inhibitor used to measure passive diffusion is given in square brackets. When no 
inhibitor is specified,  Papp,A:B[I] was determined in parental cell lines. *Assumed  Papp,A:B[I] to be the same 
as  Papp,A:B without inhibitor due to not being transported by P-gp. † Efflux ratio determined in MDCKI-
MDR1 cell line

Drug Cell line Papp,A:B[I]
(×  10–6 cm/s)

ERc References

Acetaminophen Caco-2 31.9* 1 Kamiya et al. (2020) [50]
Raclopride Caco-2 73.4 [Zosquidar, 

KO-143, Benzbromar-
one]

1.1† Colclough et al. (2024) [51]

Morphine Caco-2 2.08 [Cyclosporine A] 1.6 Crowe (2002)[52]
MDCKII-MDR1 2.12 1.3 Verscheijden et al. (2021) [20]
MDCKII-MDR1 1.8 1.3 Feng et al. (2008) [53]
MDCKII-MDR1 4.8 1.9 Garberg et al. (2005) [54]

Paliperidone LLC-PK1-mdr1a 14.7 8.1 Inoue et al. (2012) [55]
LLC-PK1-MDR1 13.3 5.3 Inoue et al. (2012) [55]
MDCKII-MDR1 16.8 3.3 Feng et al. (2008) [53]

Quinidine Caco-2 52.0 [GF120918] 4.3 Korjamo et al. (2006) [56]
Caco-2 58.9 [Verapamil] 1.5 Mukkavilli et al. (2017) [57]
Caco-2 54.5 [GW918] 5.2 Troutman & Thakker (2003a) [58]
LLC-PK1-mdr1a 56.90 16.1 Nicolaï et al. (2020) [16]
LLC-PK1-mdr1a 57.2 32.8 Uchida et al. (2011) [15]
LLC-PK1-MDR1 15.9 12.9 Nagaya et al. (2020) [59]
MDCKII-MDR1 9.52 5.9 Bicker et al. (2017) [60]
MDCKII-MDR1 8.0 7.4 Feng et al. (2008) [53]
MDCKII-MDR1 36.8 7.3 Troutman & Thakker (2003b) [61]

Risperidone Caco-2 1.56 [Verapamil] 4.1 Cousein et al. (2007) [62]
LLC-PK1-mdr1a 15.8 3.6 Inoue et al. (2012) [55]
LLC-PK1-mdr1a 66.2 2.1 Nicolaï et al. (2020) [16]
LLC-PK1-mdr1a 96.3 10.6 Uchida et al. (2011) [15]
LLC-PK1-MDR1 14.0 3.4 Inoue et al. (2012) [55]
LLC-PK1-MDR1 15.6 3.9 Nagaya et al. (2014) [63]
MDCKII-MDR1 19.8 2.0 Feng et al. (2008) [53]
MDCKII-MDR1 53.6 [GF120918] 1.7 Mahar Doan et al. (2002) [9]

Verapamil LLC-PK1-mdr1a 41.5 2.9 Nicolaï et al. (2020) [16]
LLC-PK1-mdr1a 73.5 13.3 Uchida et al. (2011) [15]
LLC-PK1-MDR1 22.3 5.4 Nagaya et al. (2014) [63]
LLC-PK1-MDR1 47.1 2.7 Nicolaï et al. (2020) [16]
MDCKII-MDR1 12.6 2.1 Feng et al. (2008) [53]
MDCKII-MDR1 44.0 [GF120918] 1.74 Mahar Doan et al. (2002) [9]
MDCKII-MDR1 28.6 2.65 Troutman & Thakker (2003b) [61]
MDCKII-MDR1 30.0 3.10 Garberg et al. (2005) [54]
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(Fig. 4). Plasma PK data of these drugs were described 
well by the plasma PK model, and the LeiCNS-PK3.4 
model adequately predicted the observed brainECF PK 
profiles within a two-fold median prediction error (PE). 
The raclopride prediction did slightly underestimate the 
time to maximum concentration  (Tmax) observed in the 
brainECF.

Brain ECF PK prediction accuracy varies 
between P‑gp substrates and dosing schemes

Predictions of rat brainECF PK were made for five P-gp 
substrates (Fig. 5). Observed plasma PK data (Supplemen-
tary Fig. 1) were described accurately within twofold PE. 
To account for the reported variability in P-gp expression 
in vitro, predictions of P-gp substrates’ brainECF PK were 
made using the lowest, average, and highest P-gp expression 

levels reported for each cell line (Table 4). The resulting 
brainECF predictions are represented through a prediction 
interval, with the upper and lower bounds of the coloured 
bands in Fig. 5 corresponding to the predictions made with 
the highest and lowest in vitro P-gp expression, respectively. 
The predictions for the average in vitro P-gp expression are 
shown as a black line. As such, each transport value has 
three predictions associated to it, except for the LLC-PK1-
MDR1 based predictions, since only one in vitro expression 
value was reported for this cell line.

After administration of a short infusion (or subcutane-
ous dose), the morphine and risperidone brainECF predic-
tions were accurate across the different transport values and 
expression levels (Fig. 5A). An overview of the percentage 
of the predictions that fall within twofold prediction error 
(PE) per in vitro expression level is shown in Table 5. The 
PEs for every single prediction (i.e., predictions of each 

Fig. 3  Overview of A  Papp,A:B[I] and B corrected efflux ratio  (ERc) per drug. Different cell lines are indicated by shapes and colours of the 
observed datapoints (Color figure online)

Table 4  Expression of P-gp in 
different cell lines in vitro

Due to variability in the reported values, the expression values are categorized into the highest, lowest, and 
average reported expression levels. All P-gp expression levels and references are given in Supplementary 
Table 3 *Average of highest and lowest expression values. $Mean of the P-gp expressions reported by Har-
wood et al. (2016) [66] and Miliotis et al. (2011) [67]. #Mean of the P-gp expressions reported by Di et al. 
(2011) [68], Feng et al. (2019) [69], and Jacqueroux et al. (2020) [70]

Cell line Highest P-gp expression 
(fmol/µg protein)

Average P-gp expression 
(fmol/µg protein)*

Lowest P-gp 
expression (fmol/µg 
protein)

Caco-2 7.4$ 4.7 2
LLC-PK1-MDR1 – – 13.1
LLC-PK1-mdr1a 61 38.1 15.2
MDCKII-MDR1 10.3 6.3 2.2#
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Fig. 4  Description of unbound 
plasma PK and prediction of rat 
brainECF PK of the passively 
diffusing drugs acetaminophen, 
paliperidone co-administered 
with the P-gp inhibitor 
tariquidar, and raclopride. These 
predictions serve as a validation 
of whether the model is able to 
accurately predict brain distri-
bution in the absence of P-gp 
mediated transport. Median PE 
(calculated as outlined in meth-
ods Sect. “Model evaluation”) 
is shown in the top-right of each 
subfigure. For the paliperidone 
prediction, the  Papp,A:B[I] value 
of 14.7 *  10–6 cm/s from Inoue 
et al. was used

Fig. 5  Rat brainECF PK predictions after A short infusion (or subcu-
taneous dose administration) and B continuous infusion after loading 
dose of the P-gp substrates paliperidone, quinidine, risperidone, mor-
phine and verapamil. Each column shows which cell line was used to 
determine  Papp[I] and  ERc values that were used as input for the pre-
diction. The colour of the prediction interval corresponds to the col-
ours given below the table, which specifies the reference from which 
transport data were retrieved (shown in Table 3). The upper line of 

the prediction bands indicates the predictions made using the high-
est in  vitro P-gp expression value for the given cell line, while the 
lowest line of the band corresponds to the lowest expression value. 
Black lines indicate the prediction made using the average in  vitro 
P-gp expression. Each row indicates a different drug. Plots without 
predictions indicate lack of transport data in a cell line for a given 
drug. Observed unbound brainECF concentrations are shown as black 
points
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individual reference and per expression level) are shown 
in Supplementary Tables 4 and 5. Table 5 also shows the 
accuracy of predictions that were made without the REF 
(predictions shown in Supplementary Fig. 2). All the mor-
phine brainECF predictions fell within twofold median PE 
using the average in vitro P-gp expression value (Table 5). 
The risperidone brainECF predictions showed the best per-
formance with the average or low P-gp expression, with only 
one of the references being unable to accurately predict the 
observed brainECF data with any of the P-gp expression 
values (Cousein et al., using Caco-2 cells, supplementary 
Table 4). None of the paliperidone or quinidine short infu-
sion predictions fell within twofold PE (Table 5), with the 
quinidine predictions reaching ± 100-fold underprediction 
(Supplementary Table 4).

For the continuous infusion data (Fig. 5B), the observed 
verapamil brainECF PK was predicted well, with almost 
all the predictions falling within twofold median PE using 
either the highest or average in vitro P-gp expression. The 
brainECF PK predictions for a continuous infusion of ris-
peridone showed similar trends as observed for the predic-
tions after subcutaneous administration (compare Fig. 5A 
and B). The paliperidone brainECF predictions during the 
continuous infusion tend to slightly overpredict the observed 
data but showed < twofold PE with the low in vitro expres-
sion value in each cell line (Table 5). Overall, the continuous 
infusion quinidine data tended to be underpredicted, with 
37.5% of the predictions falling within twofold using the 
high P-gp expression.

Assessment of prediction accuracy based 
on different stratifications of the input

Next, we assessed the accuracy of the model predictions 
when stratifying on different factors. Taking all predictions 
together (i.e., regardless of cell line or in vitro expression 
level), the model accurately predicted brainECF PK pro-
files within twofold median PE for 2 of the 4 short infu-
sion drug dosing regimens and 3 of the 4 drugs for the 
continuous infusions (Fig. 6A). Across all cell lines, the 
LLC-PK1-MDR1, LLC-PK1-mdr1a and MDCKII cell lines 
showed similar prediction accuracies for the different drugs 
(Fig. 6B). The MDCKII cell lines however showed a higher 
degree of overlap between predictions than the LLC-PK1-
mdr1a cells (Fig. 5).

Lastly, the brainECF prediction accuracies were inves-
tigated per cell line and expression level for each drug 
(Fig. 7). It shows that there is not one clear in vitro expres-
sion value that is the most accurate for predictions, which 
can also be concluded from the results in Table 5. Instead, 
to what extent P-gp activity has to be modulated appears 
to be drug dependent, as can for example be seen for the 
continuous infusion predictions obtained using data from 
the LLC-PK1-mdr1a cell line as input. Here, paliperidone 
and risperidone required the lowest in vitro expression 
value, verapamil the average value, and quinidine the high-
est in vitro expression value. In theory, the REF value used 
for scaling should depend on the experimental condition 
only and not on the drug. A few studies reported transport 

Table 5  Percentage of all predictions that fall within twofold median prediction error (PE) for each drug per in vitro expression value used to 
inform the REF

The prediction accuracy for each drug for both the short infusion data (Fig. 5A) and the continuous infusion data (Fig. 5B) is shown. Aside 
from the in vitro expression levels, the model accuracy when not using a REF is shown (“No REF” column). The number of predictions that 
are successful compared to the total amount of predictions for a given drug at a certain in vitro expression level are given in brackets behind the 
percentage. Darker blue cells indicate that more predictions fall within twofold PE, while lighter cells correspond to fewer successful predictions
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values for multiple drugs (i.e., values were obtained under 
the same experimental condition), and plotting the predic-
tion errors of the continuous infusion data per drug showed 
that a single scaling factor (e.g., low expression) results in 
different prediction accuracies between the drugs, even when 
transport values were derived from the same experimental 
setup (Supplementary Fig. 3).

Using in vitro expression and permeability data 
from the same experiment does not guarantee 
an accurate brainECF prediction

The risperidone, quinidine and verapamil permeability data 
extracted from Uchida et al. and Nicolaï et al. were reported 
in conjunction with the expression of P-gp in the studied 
cell line (lowest and highest expression in LLC-PK1-mdr1a 
cells, respectively). Combining the expression and transport 
data from the same experimental system should, in theory, 
give the best predictions. Whenever the transport values and 

P-gp expression data were correctly matched, almost all pre-
dictions were more than three-fold over or underpredicted, 
whereas using the incorrect in vitro expression value (i.e., 
the expression reported by the other reference) gave better 
(within twofold PE) predictions (Table 6). For the LLC-
PK1-MDR1 based prediction of verapamil, matching the 
transport values reported by Nicolaï et al. to the P-gp expres-
sion reported for LLC-PK1-MDR1 cells in the same arti-
cle (13.1 fmol/µg) did give an accurate prediction (median 
PE = 0.28).

Variability in in vitro derived parameters impacts 
the predicted rate and extent of distribution 
to the brain

To appreciate the impact of the variability in  Papp.A:B[I] 
and  ERc on the predicted rates and extent of drug distri-
bution, we simulated the subcutaneous administration of 
risperidone and short infusion of morphine over a range 

Fig. 6  Prediction errors (PE) of the short infusion (left panel) and 
the continuous infusion with loading dose (right panel) datasets. A 
Overall prediction errors per drug by considering all of the predic-
tions regardless of cell line or in vitro expression level used as input. 
B Prediction errors of the model per drug stratified by the in vitro cell 
lines. All expression levels (highest, average, and lowest) are consid-

ered. Colours of the boxes correspond to the drug in both subplots 
(A) and (B). The areas corresponding to < 2-, < 3- and < fivefold over- 
and underprediction are highlighted in green, yellow and red, respec-
tively. The PE of 0 is indicated by a dashed line. Black dots show 
outliers that fall outside of the minimum or maximum boxplot range 
(Color figure online)
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of input values (Fig. 8). The LeiCNS-PK3.4 simulations 
are shown as continuous lines. The predicted profile that 
is obtained by only scaling the plasma PK profile by the 
observed  Kpuu,BBB (extent of distribution) is shown as a 

dashed, red line. For risperidone, the scaled plasma profile 
shows a good match with the extent of risperidone distri-
bution, but overpredicts the rate of distribution (Fig. 8A). 
The morphine prediction using only the  Kpuu,BBB to scale 

Fig. 7  Prediction errors of the model brainECF PK predictions for 
each drug (rows), stratified by the cell line used in-vitro to determine 
transport parameters (columns) and the in-vitro P-gp expression used 
for the scaling of  CLPgp from in vitro to in vivo (box colour). In addi-
tion to the predictions made using the three in vitro expression val-
ues, the predictions made without considering the REF are shown 

(red boxplots). The areas corresponding to < 2-, < 3- and < fivefold 
over- or underprediction are highlighted in green, yellow, and red, 
respectively. The PE of 0 is indicated with a dashed line. To enhance 
the clarity of the figure, individual points for morphine were omitted 
(Color figure online)

Table 6  Median prediction errors of risperidone, quinidine and vera-
pamil predictions made using LLC-PK1-mdr1a transport data from 
Uchida et al. [15] and Nicolaï et al. [16], using the LLC-PK1-mdr1a 

in vitro P-gp expression reported by Uchida et al. and by Nicolaï et al. 
PE values shaded in green, yellow and red fall within twofold error, 
threefold error and > threefold error, respectively

Risperidone
(Subcutaneous)

Risperidone
(Constant infusion)

Quinidine
(Constant infusion)

Verapamil
(Constant infusion)

Uchida 
transport 

data

Nicolaï 
transport 

data

Uchida 
transport 

data

Nicolaï 
transport 

data

Uchida 
transport 

data

Nicolaï 
transport 

data

Uchida 
transport 

data

Nicolaï 
transport 

data

Uchida 
expression -1.14 0.56 -1.08 0.65 -1.56 -1.18 -1.2 0.28

Nicolaï
expression -0.04 1.23 0.06 1.25 -0.71 -0.05 -0.1 1.09
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the plasma profile misrepresents the observed rate of dis-
tribution in the brain ECF (Fig. 8B). The LeiCNS-PK3.4 
simulations highlight that increasing passive permeability 
shifts the predicted rates of distribution to follow the shape 
of the plasma profile more closely. Variability in the  ERc 
mostly impacts the predicted extent of distribution. How-
ever, especially for risperidone at lower (< 20 *  10–6 cm/s) 
passive diffusion speed, increasing  ERc also impacts the 
predicted  Tmax (Fig. 8A). The impact of variability in pas-
sive permeability on the predicted rate of distribution for 
passively diffusing compounds shows similar behaviour, 
with high diffusion speeds approaching the shape of the 
plasma profile (Supplementary Fig. 4).

Discussion

Transport data (e.g.,  Papp[I] and  ERc) for many drugs are 
widely available in literature, and have shown promise for 
prediction of P-gp mediated drug distribution across the BBB. 
An important distinction should be made here between pre-
dicting extent of distribution (i.e., the ratio of unbound drug 
concentration between brain ECF and plasma at steady state, 
 Kpuu,BBB) and rate (i.e., with what speed a drug crosses the 
BBB) [17]. PBPK models allow for prediction of temporal 
profiles (representing both rate and extent) based on in vitro 

information, without relying on in vivo studies. However, 
in vitro data are known to be variable, the impact of which had 
not yet been investigated for CNS PBPK modelling. Addition-
ally, the suitability of this data for brainECF PK predictions 
of multiple drugs and dosing schemes is not yet fully char-
acterized. We therefore evaluated the reliability of literature 
derived in vitro data for in vivo predictions of brainECF PK, 
by introducing an in vitro informed P-gp mediated clearance 
into the LeiCNS-PBPK model (LeiCNS-PK3.4).

In vitro transport data are informative of the in vivo 
rate of passive distribution

The LeiCNS-PK3.4 model was able to accurately predict 
unbound brainECF PK in the absence of active processes. 
This is in agreement with previous CNS PBPK models, 
which showed the same description of passive diffusion 
 (CLpassive) to allow accurate predictions of CSF distribu-
tion of passively diffusing compounds [19, 71, 72]. The 
 Papp,A:B[I] reported in literature for the passively diffusing 
compounds were either only available from one source or 
did not vary greatly. Simulations of the passively diffusing 
drugs (Supplementary Fig. 4) however show that varying 
passive diffusion has a great impact on the predicted rate of 
distribution of the drugs. The fact that we were able to ade-
quately predict the brainECF PK of these compounds using 

Fig. 8  Impact of varying passive permeability  (Papp[I]) and  ERc on 
the predicted brainECF PK profiles of risperidone and morphine. The 
passive permeability used as input into the LeiCNS-PK3.4 model is 
given in the headers, while the  ERc used as input is indicated by the 
colour of the line. A Risperidone simulations are given using in vitro 
P-gp expression of 13.1 fmol/µg protein as reported in LLC-PK1-
MDR1 cells. The dashed red line represents the unbound plasma 
concentration profile scaled by the observed  Kpuu,BBB of 0.147 (i.e., 

 CECF =  Cplasma,u *  Kpuu,BBB). B Morphine simulations are given using 
the average in  vitro P-gp expression in Caco-2 cells of 4.7 fmol/µg 
protein. The dashed red line represents the unbound plasma concen-
tration profile scaled by the observed  Kpuu,BBB of 0.23. For both sub-
plots,  Papp[I] values are given in  10–6 cm/s. Black dots are observed 
microdialysis data. The LeiCNS-PK3.4 simulations are shown as con-
tinuous lines.  Papp[I] here represents  Papp,A:B[I] (Color figure online)
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the currently applied values therefore show the translational 
value of the in vitro transport data to in vivo.

Nicolaï et al. had to reduce in vitro passive diffusion ten-
fold for accurate prediction of  Kpuu,brain [16]. Such a reduc-
tion in passive diffusion rate has great implications for the 
predictions of temporal PK, as shown by the risperidone 
simulations. The risperidone passive permeability reported 
by Cousein et al. for example was more than tenfold lower 
than other risperidone transport values [62], which resulted 
in a poor prediction of the rate of distribution (Fig. 5). This 
highlights the difference between prediction of  Kpuu,brain 
(extent) and temporal brain (ECF) PK profiles (both rate 
and extent). Accurate prediction of one does not guarantee 
an accurate prediction of the other. This was also shown by 
Storelli et al., who predicted  Kpuu,brain using in vitro data 
within twofold of the observed value, but subsequently 
underpredicted temporal PK profiles [73].

In the risperidone and morphine simulations (Fig. 8) we 
included a prediction based on scaling the plasma profile 
by the extent of distribution  (Kpuu,BBB). This resulted in a 
predicted rate of distribution that did not follow the observed 
rate of distribution, which was especially clear for a slowly 
diffusing compound like morphine. This shows the impor-
tance of separately accounting for rate and extent when pre-
dicting CNS exposure. The simulations show that the inter-
play between  Papp,A:B[I] and  ERc is important in determining 
the final temporal PK profiles.

Variability in vitro impacts the predicted rate 
and extent of drug distribution and therefore 
reliability of the model

Including P-gp mediated clearance  (CLPgp) based on litera-
ture-derived in vitro data showed promising predictions for 
most of the P-gp substrates. The values of in vitro-derived 
parameters are different between sources, which can lead to 
markedly different predicted extents of distribution for the 
P-gp substrates, most clearly seen for the continuous infu-
sion dosing regimens (Fig. 5B) (see for example the LLC-
PK1-mdr1a based risperidone predictions). The MDCKII-
MDR1 derived transport data, which show a high degree 
of variability in  Papp,A:B[I] for quinidine, risperidone and 
verapamil, showed the least variability in  ERc of the differ-
ent cell lines, leading to the most similar predicted extents of 
distribution between sources. The model simulations support 
the observation that variability in  ERc is the major factor in 
determining the predicted extent of distribution.

Papp,A:B[I] was also found to be variable between sources, 
which has important implications for the predicted rate of 
distribution to the brain (Fig. 8, Supplementary Fig. 4). 
Our risperidone simulations show that  Papp,A:B[I] values 
higher than 20×10–6 cm/s mirror the shape of the plasma 
PK profile, rather than the observed rate of distribution in 

the brain ECF. The two LLC-PK1-mdr1a based risperidone 
predictions using the data from Uchida et al. and Nicolaï 
et al.  (Papp,A:B[I] = 96.3 ×  10–6 cm/s and 66.2 ×  10–6 cm/s, 
respectively) therefore overpredict the rate of distribution as 
observed in vivo. The in vitro data by Nagaya et al., Inoue 
et al. and Feng et al. seem to resemble risperidone’s PK 
in vivo more closely. The reason for why exactly these stud-
ies report such different values for  Papp,A:B[I] should be stud-
ied more thoroughly, in order to serve as a robust input for 
LeiCNS-PK3.4.

The morphine simulations (Fig. 8B) indicate a require-
ment of low  Papp.A:B[I] and low  ERc in order to accurately 
capture both rate and extent of distribution in vivo. This 
agrees with what is reported in vitro for morphine, allow-
ing accurate predictions of morphine’s rate and extent of 
distribution by LeiCNS-PK3.4. This shows that in vitro 
data can indeed hold important mechanistic information 
on a P-gp substrate’s distribution behaviour in vivo. We 
observe however that the variability observed for both 
 Papp,A:B[I] and  ERc has substantial impact on the robust-
ness of the predicted rates and extent, which should be 
kept in mind when using in vitro data, especially when it 
is derived from a single source and not compared to other 
articles.

Accounting for P‑gp expression in vitro

Most of the published transport data did not report 
 Papp,A:B[I] and  ERc in conjunction with in  vitro P-gp 
expression. The P-gp expression in vitro was found to be 
highly variable in literature. Therefore, instead of using a 
single P-gp expression value, we made predictions for the 
bandwidth of reported P-gp expression values. From that 
we conclude that the REF greatly influences the extent 
of drug distribution, and thereby the prediction accuracy. 
This is in line with Fenneteau et al. who identified the scal-
ing factor associated with P-gp expression to be a sensitive 
parameter in their PBPK model [74], as well as the results 
by Ball et al. who showed an important role of the REF 
(named RAF in their study) on the predicted brainECF 
profile [23]. Most of the transport data have a median PE 
within twofold error when combined with one or multiple 
of the reported P-gp expression levels (Table 5 and Sup-
plementary Tables 4 and 5). This indicates that currently, 
as long as the underlying reasons for variability in P-gp 
expression data are unknown and the actual P-gp expres-
sion in vitro is not given, this bandwidth P-gp expression 
approach gives a good indication of the PK profile in vivo.

Uncertainty in in vitro P-gp expression and its effect 
on the prediction of intestinal permeability has been 
investigated by Harwood et al., who recommended that 
both expression and permeability should be measured in 
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conjunction for accurate IVIVE [75]. This was echoed by 
Verscheijden et al. who had to estimate a scaling factor in 
their brain PBPK model, since a REF based on a litera-
ture-derived expression value did not adequately describe 
observed data [19]. Interestingly, for the cases in which 
we combined LLC-PK1-mdr1a transport values with 
in vitro P-gp expression that were reported in conjunc-
tion, we observed poor prediction accuracies (> threefold 
PE, Table 6). In fact, for LLC-PK1-mdr1a, using in vitro 
expression values reported by other studies gave better 
predictions for risperidone, quinidine and verapamil than 
using the in vitro expression level given in the same pub-
lication (Table 6). We will now discuss multiple ideas that 
might (partly) explain this observation.

Are P‑gp expression and its activity linearly related?

Uchida et al. consistently reported a higher  ERc than Nicolaï 
et al., even though Nicolaï et al. reported an in vitro P-gp 
expression 4-fold higher than Uchida et al. [15, 16]. Based 
on the assumed correlation between expression of P-gp and 
its functionality, we would expect the P-gp expression to also 
be lower for Nicolaï et al. This is also what the model indi-
cates to be required for accurate predictions (Table 6). When 
Nicolaï et al. scaled only through a REF, they observed a 
poor prediction accuracy of the  Kpuu,brain which they tended 
to overpredict (our predictions using Nicolaï data similarly 
overpredict the observed data, Table 6) [16]. A tenfold 
reduction of passive permeability allowed for more accu-
rate predictions in their study. Not considered by Nicolaï 
et al. (nor by our model) is the distinction between total P-gp 
and efflux active (or functional) P-gp in a cell line [76, 77]. 
Functional P-gp is expressed at or near the tips of microvilli, 
which can successfully expel a drug [76]. Drug expelled by 
P-gp at the sides of microvilli (‘inactive’ P-gp) however will 
promptly collide with the membranes of neighbouring villi 
and be reabsorbed. The amount of functional P-gp has been 
reported to be tenfold lower than the total amount of P-gp 
in Caco-2 cells [76]. LLC-PK1 cells also possess microvilli 
[78, 79], as such a discrepancy between total P-gp and func-
tional P-gp might explain why the Nicolaï et al. data require 
lower in vitro expression levels in our model predictions. It 
does not explain why the Uchida et al. efflux ratios are so 
high, as the functional P-gp concentration would have to be 
higher than the total amount to justify the use of a higher 
expression level than reported.

Besides the distinction between total and active P-gp, we 
might also question our and others’ assumptions (1) that 
activity and expression of P-gp are linearly correlated, and 
(2) that this relationship is drug-independent. A linear rela-
tionship between expression and activity of P-gp in vitro has 
been reported for quinidine, verapamil and vinblastine [40, 
41]. This has also been reported for BCRP and OATP1B1 

when normalizing to  Na+-K+ ATPase expression [80]. 
In vivo, changes in intestinal P-gp expression influenced 
uptake of P-gp substrates [81]. However, others were unable 
to correlate expression and functionality of P-gp. A study 
on the hCMEC/D3 BBB cell line showed that an increase 
in both mRNA and protein expression of P-gp did not influ-
ence transport of rhodamine-123, a strong P-gp substrate 
[82]. Similarly, Kosztyu et al. were not able to relate P-gp 
expression (either protein or mRNA) to its activity in vitro 
[83]. Expression of P-gp on lymphocytes also did not show 
a relationship to functionality [84, 85], and an in vivo study 
showed that changes in P-gp protein expression at the rat 
BBB did not influence quinidine efflux [86]. At the dog 
BBB, individual differences in P-gp and BCRP expression 
did not correlate with the  Kp,brain of quinidine and apafant 
(P-gp substrates) or dantrolene and daidzein (BCRP sub-
strates) [87].

In the linear correlations reported by Tachibana et al., 
a change in expression did not yield the same change in 
maximum P-gp activity  (Vmax) for different drugs [40]. 
Sanchez-Dengra et al. developed a PBPK model to pre-
dict brainECF PK, and fit empirical scaling factors for 
their IVIVE approach. They obtained different estimates 
depending on the drug, and correlated the scaling factors in 
a non-linear fashion with logP [88]. A drug-dependency of 
the scaling factor can also be observed in the current study. 
We first observed that a single scaling factor as applied 
in the current methodology is not generically applicable 
across drugs (Table 5 and Fig. 7). Moreover, a compari-
son of the PEs of the continuous infusion predictions made 
using the low in vitro P-gp expression for references that 
reported transport values for multiple drugs, showed a trend 
of  PEpaliperidone >  PErisperidone >  PEverapamil >  PEquinidine (sup-
plementary Fig. 3). If differences in P-gp activity between 
in vitro and in vivo would only depend on P-gp expression, 
a single scaling factor should give similar prediction errors 
for data retrieved from a single experimental setup. Overall, 
the current results are in line with other reports which sug-
gest that the relationship between expression and activity of 
P-gp is not straightforward, at least at the BBB. Considering 
drug-specific differences together with differences in P-gp 
expression and morphology of the cell line(s) might there-
fore prove important for successful and robust IVIVE of 
 CLPgp at the BBB.

Methodological considerations

To account for the effect of other (endogenous) transporters 
present in vitro, we made use of the corrected efflux ratio 
 (ERc). This was done by dividing the ER (obtained in the 
P-gp expressing cell line) by the ER[I], which is obtained 
though chemical inhibition of P-gp or by measuring in the 
parental cell line that does not overexpress P-gp. Chemical 
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inhibitors that were used in the in vitro studies are Cyclo-
sporine A, GF120918, verapamil and GW918. Cyclosporine 
A, GF120918 and verapamil all also inhibit BCRP and 
MRP1 [89]. Parental cell lines also are not perfect copies 
of the transfected cell line, as transporter expression might 
differ [90]. As such, it is likely that the currently calculated 
 ERc does not purely represent P-gp activity if a drug is a 
substrate for multiple transporters. For future research, it 
is recommend to investigate whether using a P-gp specific 
inhibitor [91] to determine ER[I] might be more reliable for 
a description of purely P-gp.

Another aspect that might improve the method is to use 
pmol transporter per gram (pmol/g) wet tissue weight as a 
measure of expression, instead of fmol P-gp/µg total protein 
[15, 39, 92]. This unit reduces inter-laboratory variability 
in transporter expression, as it accounts for differences in 
sample preparations and purity of the determined protein 
amounts [93]. An approach to convert fmol/µg protein to 
pmol/g wet tissue has been proposed [94, 95], however, this 
requires substantial knowledge of the experimental setup, 
which is not easily extracted from literature. Additionally, 
in vitro P-gp expression has not yet been reported in this 
unit, which restricted the current study to use of fmol/µg.

We did not limit the in vitro studies to those that use the 
rat homologue of P-gp, but also included mouse and human 
derived P-gp. We did not think this would significantly influ-
ence the rat brainECF PK predictions, as the rat, mouse 
and human homologues of P-gp share a highly conserved 
amino acid sequence (sequence similarity of 92% mouse-
human, 97% mouse-rat) [96]. Additionally, others previously 
reported similar binding characteristics on a molecular level 
[96], a good correlation in mouse and rat ER in vitro [97], 
similar functionality in vivo of rat and mouse P-gp [98], 
and a good correlation between human and mouse P-gp ER 
 (R2 = 0.92, n = 3300) [53]. Moreover, our model predictions 
do not show an inability of one of the homologues to accu-
rately predict rat brainECF PK.

Quinidine influx and differences 
between short infusion and continuous infusion 
dosing

The final point we would like to discuss is the difference 
between the short infusion (S.I.) and continuous infusion 
(C.I.) data of quinidine. The S.I. quinidine data was reported 
by Westerhout et al. [44]. P-gp was functional in this study, 
as coadministration of the P-gp inhibitor tariquidar signifi-
cantly increased the  Kpuu,brain from 1.5 to 8.6. Therefore, 
these results indicate significant P-gp activity but also a role 
for influx transport of quinidine in vivo (as  Kpuu,brain > 1) 
that is not (sufficiently) present in vitro. This is supported 
by other reports that have indicated quinidine to be influxed 
by an influx transporter (like OATP1 or OATP2) and/or to 

inhibit influx of other compounds [99–102]. Ishida et al. 
have reported quinidine to be influxed during in vitro experi-
ments in the Caco-2 cell line [103]. Quinidine is an exam-
ple of how our model can highlight important physiological 
aspects in vivo that might be missed in vitro. Of note is 
that the influx led to great underprediction of the S.I. data 
(± 100-fold), but not of the C.I. data (overall underpredic-
tion between ± threefold and ± sixfold), giving predictions 
within threefold PE for all transport data when using the 
high in vitro expression. The extent of drug distribution var-
ies between different brain regions [104]. This might play a 
role as the C.I. dataset measured ECF data in the hippocam-
pus and frontal cortex, while the S.I. dataset measured in the 
striatum. The difference in rat type might also play a role as 
the C.I. dataset used Sprague–Dawley rats [47] while the S.I. 
dosing used Wistar rats [44]. Finally, the difference in the 
administration itself (C.I. versus S.I.) might influence the 
BBB transport kinetics. Overall, the reason for the difference 
in the C.I. and S.I. quinidine (and also paliperidone) datasets 
is unclear and warrants further investigation. Estimation of 
the influx together with P-gp transport [21] might allow for 
these aspects to be computationally studied.

Conclusions

This study highlights that accurate rat brainECF PK pre-
dictions of passively diffusing drugs and P-gp substrates 
are possible by informing a PBPK model with in vitro data 
obtained from literature. Especially predictions based on 
data from MDCKII-MDR1 cells showed a high degree of 
agreement in the predicted extent of distribution between 
different studies, due to little variation in reported  ERc 
of drugs. In general, variability in  ERc strongly affects 
predicted extents of distribution. Variability in  Papp,A:B[I] 
was substantial (also within cell lines), which has impor-
tant implications for the predicted rate of distribution. 
Large variability in the reported in vitro P-gp expres-
sion influenced robustness of the model predictions and 
confidence in the predictions when using a single value. 
Instead, bandwidth predictions based on the extremes of 
reported in vitro P-gp expression allowed a brainECF PK 
prediction area, giving a good indication about what to 
expect in vivo. However, whenever transport data and 
in vitro P-gp expression reported by a single study were 
used as input together, this did not guarantee an accurate 
prediction. Scaling in vitro  CLPgp to in vivo only through 
differences in P-gp expression might as such not com-
pletely capture the differences in functionality. Important 
mechanistic information about the relationship between 
P-gp expression and functionality appears to be missing 
for robust scaling of P-gp activity at the BBB. Looking 
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beyond just expression differences and considering other 
(drug-specific) factors might therefore improve the robust-
ness of the IVIVE approach.
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